首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
考察了由污泥残渣制备生物絮凝剂的条件,同时对其絮凝机理进行了初步的探讨。结果表明,絮凝剂的最佳制备条件为:污泥残渣浓度100 g/L,处理方式为水洗,水洗次数为3次。该絮凝剂具有良好的热稳定性和pH稳定性,储存100 d内,絮凝剂的絮凝活性均保持在94%以上;对其成分分析的测定结果表明该絮凝剂的主要成分为多糖类物质;絮凝剂与高岭土颗粒之间通过离子键结合;利用扫描电镜观察絮体形态,发现其结构密实,有利于絮体沉降。推测其絮凝机理为絮凝剂和高岭土之间首先以离子键结合,然后通过吸附架桥作用絮凝沉淀。  相似文献   

2.
多粘类芽孢杆菌GA1所产絮凝剂的絮凝性能研究及机理探讨   总被引:12,自引:0,他引:12  
采用正交絮凝、粒度检测及电镜扫描考察了多粘类芽孢杆菌GA1所产絮凝剂(MBFGA1)对高岭土溶液、土壤悬浊液、洗煤废水及垃圾渗滤液4种废水的絮凝性能,并利用蒽酮试验和红外光谱对絮凝剂成分进行了初步鉴定.在正交絮凝实验获得的最佳絮凝条件下,絮凝剂对高岭土溶液、土壤悬浊液、洗煤废水和垃圾渗滤液的絮凝率分别高达99.53%、99.50%、98.2%和75.60%,絮体沉降速度分别为0.03 m/s、0.025 m/s、0.025 m/s和0.005 m/s;土壤悬浊液中颗粒絮凝后平均粒径增大且大于10 μm,其余3种废水中颗粒平均粒径减小且小于10 μm;电镜扫描结果显示,絮凝前后废水颗粒的形态均从棱角分明转变为包埋的无棱角;EDTA、HCl以及尿素检验发现4种颗粒与絮凝剂分子间靠离子键结合;蒽酮反应及红外光谱结果显示该絮凝剂为含有较多羟基及羧基等官能团的多糖大分子.实验结果表明絮凝剂对高颗粒物浓度废水有很好的处理效果,其絮凝机理主要是吸附架桥作用.  相似文献   

3.
微生物絮凝剂MBFTRJ21的絮凝机理   总被引:24,自引:3,他引:24  
筛选得到的乳酸杆菌属(Lactobacillus)具有用量少絮凝效果好等优点.蒽酮反应、考玛斯亮蓝、Elson-Morgan反应表明,絮凝剂MBFTRJ21为粘多糖类高分子絮凝剂;ξ电位测定及氢键和离子键检验结果表明,絮凝剂和碱泥之间的作用力为氢键;絮凝剂的热处理和KIO4处理表明,其活性成分为蛋白质和糖胺;絮凝过程中粒度分析表明,絮凝过程存在架桥作用.其絮凝机理为:絮凝剂和碱泥在絮凝剂的活性部位--糖胺中的氨基以氢键的形式结合,然后再经过架桥作用絮凝沉淀.  相似文献   

4.
在实验室烧杯实验中,通过利用光散射监控技术,以及测定絮凝后上清液的残余浊度和Zeta电位,研究了硫酸根和硝酸根聚二甲基二烯丙基铵盐聚电解质(PDADMAX)的絮凝性能.以不同浊度的高岭土悬浊液为目标物,详细地讨论了反离子中不同含量的SO4^2-或NO3^-对絮凝效能的影响.为了进一步阐明PDADMAX的絮凝机理,用原子力显微镜(AFM)和比浓粘度表征了反离子对PDADMAX溶液性质和吸附形貌的影响实验结果表明:反离子明显影响了PDADMAX的絮凝性能.含有NOr的PDADMAX具有更强的“电中和作用”和更高的絮凝效率,而含有SO4^2-的PDADMAX具有更高的“吸附架桥作用”既更宽的最佳絮凝剂投量范围、更大的絮体.不同的SO4^2-或NO3^-含量的PDADMAX絮凝剂的絮凝效率不同,其中都在含量20%时效果最好.而且在高浊度条件下,SO4^2-或NO3^-对PDADMAX的絮凝效果有更明显地增强.  相似文献   

5.
微生物絮凝剂的絮凝性能及其絮凝形态研究   总被引:2,自引:0,他引:2  
利用本实验室分离、筛选的微生物絮凝剂菌株G15,对其进行发酵培养,研究了絮凝剂投加量、絮凝反应体系pH值等对其絮凝性能的影响;对反应体系的ζ电位进行了测定,并且对所形成絮体的微观形态进行了观察。研究结果表明:该微生物絮凝剂在碱性条件下有较强的絮凝活性,当pH=10时最佳投加量为2.5mL;絮凝剂具有较强的热稳定性;加入菌株G15的发酵液后,高岭土悬浊液的ζ电位从-36.27mV显著上升至-12.97mV;并且该微生物絮凝剂产生的絮体颗粒大且结构密实,形态上有明显的分形特征。  相似文献   

6.
利用小角度激光光散射在线监测技术研究了不同阳离子有机高分子絮凝剂对带负电荷的高岭土颗粒体系的絮凝动力学和絮体结构.对于高电荷密度的聚二甲基二烯丙基氯化铵(PDADMAC),由于分子量低其初始絮凝反应速度较慢,最终形成的絮体也较小.絮凝过程中,其絮体结构发生重组和排列,分形维数从1.83升高到2.09,所形成的絮体密实.对于低电荷密度的2种阳离子聚丙烯酰胺(CPAM),因其分子量大投药量高,絮凝反应速度较快;但其絮体的分形维数较小且在絮凝反应中基本保持不变,形成的絮体结构开放和松散.基于有机高分子对高岭土体系浊度和zeta电位的影响,结合絮凝动力学和絮体结构分析,结果表明,PDADMAC絮凝机理是电中和作用,而随着分子量的增加和电荷密度的降低,CPAM则主要通过吸附架桥作用产生絮凝.  相似文献   

7.
反相微乳液聚合PAM在悬浮介质中的絮凝过程研究   总被引:2,自引:0,他引:2  
研究了Span80-Tween80/异辛烷/H2O反相微乳液聚合丙烯酰胺反相微乳液聚合所得到的PAM的微观结构及其在1%高岭土悬浮液的模拟废水中的絮凝过程与机理。采用电子显微镜、激光纳米粒度仪、分光光度计等测试手段,测定了PAM粒子以及与悬浮介质结合的絮体形态、粒径和粒径分布等微观结构及其絮凝性能。试验结果表明:反相微乳液聚合所制备的PAM为单分散、球形的纳米材料,粒径(D)在145~175nm之间;AMPS改性PAM与高岭土结合后,高岭土与高分子团状结构包埋在一起,透过率较大,絮凝范围宽,可以理解为高分子絮凝剂的"架桥-吸附-网捕"机理。  相似文献   

8.
聚合氯化铝中Alb形态去除腐殖酸的效果及机制研究   总被引:1,自引:0,他引:1  
Alb形态[Al12AlO4(OH)247+]是聚合氯化铝(polyaluminiurn chloride,PAC)水解-聚合作用中形成的一种粒度小、所带正电荷多、聚集程度高及分子量大的多核羟基配合物.本试验采用乙醇.丙酮混合沉淀法分离PAC溶液中各种铝形态,提纯出Alb形态(Alb絮凝剂).研究投加量、pH及无机离子对Alb絮凝剂处理腐殖酸模拟水样絮凝效果的影响,并利用光散射颗粒分析仪(PDA2000)测定Alb絮凝剂对腐殖酸絮凝过程中絮体的形成与增长过程的动态变化,结合絮体的Zeta电位,对Alb絮凝剂的絮凝机制进行了初步探讨.结果表明,当投加量为4.3~6.3 ms/L、pH值为3.0~6.0时,Alb絮凝剂处理腐殖酸模拟水样达到最佳絮凝效果;NH4+、SiO32-、H2PO4-的存在明显抑制其絮凝性能.絮凝动力学过程和絮体Zeta电位表明,Alb絮凝剂在水处理中主要是通过电中和作用和吸附网捕卷扫作用共同起絮凝作用的.  相似文献   

9.
选取浓度为25mg/L的酸性大红-GR溶液为模拟染料废水,采用氧化-絮凝耦合工艺,探索了氧化剂种类、絮凝剂种类、废水pH值、氧化剂和絮凝剂投加量对氧化-絮凝耦合处理酸性大红染料的影响,确定最佳处理条件为:酸性大红溶液初始pH值不变,高锰酸钾和PTSS的投加量分别为为20mg/L和10mg/L(以钛离子计),脱色率和COD去除率均最大,分别为96.3%、56.5%。通过FTIR光谱扫描、絮体的显微形貌观察、酸性大红和新型絮凝剂聚硅硫酸钛(PTSS)的表面电动电位随pH值的变化的测定,分析了氧化-絮凝耦合法的反应历程:高锰酸钾破坏酸性大红的发色基团后,自身被还原成新生态二氧化锰胶体;二氧化锰胶体吸附酸性大红及其氧化产物,并被无机高分子絮凝剂PTSS通过电中和及架桥网捕等作用卷裹成絮体。  相似文献   

10.
以城市污水处理厂的剩余活性污泥为原料,以稀盐酸为提取剂制备了污泥絮凝剂,并优化了污泥絮凝剂的制备方法及絮凝条件。当稀盐酸浓度为1. 2 mol/L,破解时间为20 min时,制得的絮凝剂对高岭土悬浮液的絮凝率可达到99. 5%。对于30 g污泥,提取剂稀盐酸的用量为200 m L,浓度为1. 2 mol/L时,连续提取2次,主要絮凝活性成分可基本提取出来。采用加碱溶液的方法对污泥絮凝剂进行提纯,制备得到纯化的絮凝剂PSF-1~3。当絮凝体系pH在4. 0~12. 0时,纯化絮凝剂对高岭土悬浮液的絮凝率均在95%以上。采用红外光谱对3个提纯絮凝剂进行结构解析,结果表明:纯化的污泥絮凝剂中存在O—H和N—H或二者之一,且存及酰胺键,推测絮凝剂的主要絮凝活性成分为多糖和蛋白质。采用扫描电镜对絮凝剂絮凝前后的形貌进行检测,絮凝后高岭土颗粒团聚在絮凝剂周围,由此推测在高岭土和絮凝剂之间产生吸附架桥作用。  相似文献   

11.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

12.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
Earthworm toxicity tests are useful tools for terrestrial risk assessment but require a hierarchy of test designs that differ in effect levels (behavior, sublethal, lethal). In this study, the toxicity of chlorpyrifos contaminated soil on earthworms was assessed. In addition to the acute and chronic tests, an avoidance response test was applied. Earthworms were exposed to sublethal and lethal concentration of chlorpyrifos, and evaluated for acute toxicity, growth, fecundity and avoidance response after a certain exposure period. The test methods covered all important ecological relevant endpoints (acute, chronic, behavioral). Concentration of 78.91 mg/kg, chlorpyrifos caused significant toxic effects in all test methods, but at lower test concentrations, only significant chronic toxic effects could be observed. In the present study, chlorpyrifos had adverse effect on growth and fecundity in earthworm exposed to 5 mg/kg chlorpyrifos after eight weeks. The avoidance response test, however, showed significant repellent effects concentration of 40 mg/kg chlorpyrifos. For chlorpyrifos, concentration affecting avoidance response was far greater than growth and fecundity, it seemed likely that earthworms were not able to escape from pesticide-contaminated soil into the clean soil in field and hence were exposed continuously to elevated concentrations of pesticides.  相似文献   

17.
Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 μg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 μg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.  相似文献   

18.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

19.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

20.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号