首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Foraging desert ants navigate primarily by path integration. They continually update homing direction and distance by employing a celestial compass and an odometer. Here we address the question of whether information about travel distance is correctly used in the absence of directional information. By using linear channels that were partly covered to exclude celestial compass cues, we were able to test the distance component of the path-integration process while suppressing the directional information. Our results suggest that the path integrator cannot process the distance information accumulated by the odometer while ants are deprived of celestial compass information. Hence, during path integration directional cues are a prerequisite for the proper use of travel-distance information by ants.  相似文献   

2.
In search of the sky compass in the insect brain   总被引:2,自引:0,他引:2  
Like many vertebrate species, insects rely on a sun compass for spatial orientation and long- range navigation. In addition to the sun, however, insects can also use the polarization pattern of the sky as a reference for estimating navigational directions. Recent analysis of polarization vision pathways in the brain of orthopteroid insects sheds some light onto brain areas that might act as internal navigation centers. Here I review the significance, peripheral mechanisms, and central processing stages for polarization vision in insects with special reference to the locust Schistocerca gregaria. As in other insect species, polarization vision in locusts relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Stages in the brain involved in polarized light signaling include specific areas in the lamina, medulla and lobula of the optic lobe and, in the midbrain, the anterior optic tubercle, the lateral accessory lobe, and the central complex. Integration of polarized-light signals with information on solar position appears to start in the optic lobe. In the central complex, polarization-opponent interneurons form a network of interconnected neurons. The organization of the central complex, its connections to thoracic motor centers, and its involvement in the spatial control of locomotion strongly suggest that it serves as a spatial organizer within the insect brain, including the functions of compass orientation and path integration. Time compensation in compass orientation is possibly achieved through a neural pathway from the internal circadian clock in the accessory medulla to the protocerebral bridge of the central complex.  相似文献   

3.
Animals that forage from a central place can keep track of their displacement relative to home through a process called "path integration." During a study of the stability of homing information over time, we noticed that honey bees held at a feeding place for several hours sometimes headed not in the homeward compass direction on their release, but in the reverse compass direction. This behavior suggested that the path integration system had been reset to a state corresponding to an outward flight to the food. Most models of insect navigation assume that it is the experience of reaching home that resets the path integration system, enabling the activation of vectors appropriate for subsequent outbound foraging trips. Here we provide evidence that this resetting can be influenced by motivational cues associated with food deprivation. The effect of food deprivation is independent of any positional cues provided by familiar landmarks or by experience in traveling toward a goal.  相似文献   

4.
Pigeon homing, investigated as a paradigmatic example of bird navigation, appears to be based on two mechanisms of orientation whose functions correspond to those of map and compass. Tasks of the latter are usually accomplished by a sun compass, taking into account the sun's movement and time of day. Under overcast skies, the magnetic field of the earth may be used for compass orientation. The "map" part of the system, responsible for site localization, makes use of olfactory perception of atmospheric trace compounds, which must be concluded to contain positional information in unfamiliar areas up to several hundreds of kilometers from home.  相似文献   

5.
It is thought that young homing pigeons are able to use information acquired en route for their initial homeward orientation. However, the cues involved and mechanisms utilised are under discussion. Blocking light-dependent route-specific information during the first leg of an outward journey detour, together with analysis of pigeons that were raised under different loft conditions, allowed us to correctly evaluate the functioning of this mechanism and, more generally, the navigational map of birds. Pigeons from the same stock were raised and kept in two different lofts. The birds in the experimental groups were transported to the release sites via detours, and light-dependent information was denied during the first half of the outward journey (no compass information was available). Control birds were transported by the most direct route and had access to all available information. In general, the results showed that the low-loft birds preferred to use magnetic compass cues, whereas the high-loft birds preferred to use navigational map cues to collect information of the first part of the outward journey. The impairments observed in the homing performances of the experimental groups highlight the reliability of information collected inside the map area. Relevant to an understanding of the route-reversal mechanism was the evidence that this mechanism is able to function in the absence of compass information (birds raised in a wind-exposed loft show a detour effect). In systems where directional information could be provided by multiple sources, processing and extracting accurate course trajectories through a common mechanism may prove more efficient and reliable.  相似文献   

6.
Homing pigeons are well known as good homers, and the knowledge of principal parameters determining their homing behaviour and the neurological basis for this have been elucidated in the last decades. Several orientation mechanisms and parameters—sun compass, earth’s magnetic field, olfactory cues, visual cues—are known to be involved in homing behaviour, whereas there are still controversial discussions about their detailed function and their importance. This paper attempts to review and summarise the present knowledge about pigeon homing by describing the known orientation mechanisms and factors, including their pros and cons. Additionally, behavioural features like motivation, experience, and track preferences are discussed. All behaviour has its origin in the brain and the neuronal basis of homing and the neuroanatomical particularities of homing pigeons are a main topic of this review. Homing pigeons have larger brains in comparison to other non-homing pigeon breeds and particularly show increased size of the hippocampus. This underlines our hypothesis that there is a relationship between hippocampus size and spatial ability. The role of the hippocampus in homing and its plasticity in response to navigational experience are discussed in support of this hypothesis.  相似文献   

7.
Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.  相似文献   

8.
In contrast to flying insects, in which distance estimation is visually mediated, self-induced image motion and use of familiar landmarks are known to play a minor role in ants. Here we show that strictly diurnal Cataglyphis cursor ants can gauge with accuracy the distance they have travelled even in complete darkness in the absence of any other cues, i.e. chemical or protocounting information. Thus, an ants odometer is a vision-independent system based on proprioceptive cues, implicating some form of step counting, which remain to be elucidated.  相似文献   

9.
Wind and sky as compass cues in desert ant navigation   总被引:2,自引:0,他引:2  
While integrating their foraging and homing paths, desert ants, Cataglyphis fortis, depend on external compass cues. Whereas recent research in bees and ants has focused nearly exclusively on the polarization compass, two other compass systems—the sun compass and the wind (anemo) compass—as well as the mutual interactions of all these compass systems have received little attention. In this study, we show that of the two visual compass systems, it is only the polarization compass that invariably outcompetes the wind compass, while the sun compass does so only under certain conditions. If the ants are experimentally deprived of their polarization compass system, but have access simultaneously to both their sun compass and their wind compass, they steer intermediate courses. The intermediate courses shift the more towards the wind compass course, the higher the elevation of the sun is in the sky.  相似文献   

10.
A current model suggests that magnetoreception of compass information starts with light-dependent primary processes. Light-dependency of magnetoreception is supported by behavioral experiments with homing pigeons and caged migratory birds. Three passerine species showed normal orientation under dim monochromatic light from the blue-green range of the spectrum, while they were disoriented under yellow and red light. A sevenfold increase in intensity and pre-exposure to specific wavelengths caused changes in behavior. The behavioral data indicate a complex relationship between the wavelength of light and magnetoreception, suggesting the involvement of more than one type of receptors. Extracellular recordings from the nucleus of the basal optic root and the tectum opticum identified units that responded to changes in magnetic North. Each unit showed a peak in a distinct spatial direction, so that the input of these units, processed collectively and integrated, would indicate compass directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号