首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
采用酸碱法溶出电脑线路板中的贱金属,用王水制备金贵液,然后选用萃取容量较大的甲基异丁基甲酮进行萃金研究,结果表明:在相比为0.6、振荡萃取频率(100 r/min)、萃取时间15 min、温度40℃时,MIBK萃金的效果最佳,一次萃取率可达到97.14%,当金贵液中金含量大于30μg时,在以上条件下,萃取率可达到98%以上;选用5%的草酸进行金的反萃取,在70℃反萃40 min其反萃率可达98%以上;在120℃条件下蒸馏、冷凝回收有机相中的甲基异丁基甲酮,其回收率大于98%,节约萃取成本的同时,可提高试剂的利用效率。  相似文献   

2.
利用国产新型铜萃取剂DZ988,以PEG-NO2/H2SO4混酸溶液氧化浸取废弃电子元器件得到的酸浸液为萃取原液(含铜浓度CCu=3.132 g/L),进行铜的萃取研究,考察各因素对铜的萃取及反萃取的影响。试验结果表明,铜的萃取率随萃取剂浓度、O/A比、萃取温度及pH的提高而提高;在萃取剂浓度设定为25%,萃取料液浓度用氨水调至pH=2,油水比O/A=1:1,常温的条件下,对废弃电子元器件的PEG-NO2/H2SO4混酸浸出液中的铜的萃取率可达99.45%,铜、铁分离系数达1 151;以硫酸作反萃剂,对负载铜的萃取剂进行反萃取研究,在硫酸溶液浓度为250 g/L,相比O/A=1:1时,铜的反萃率接近100%。同时,DZ988基本不萃取Co、Ni,后续可从铜萃余液中继续回收Co、Ni。  相似文献   

3.
采用二丁基卡比醇(DBC)从印刷电路板废料中萃取金。考察了萃取剂浓度、氯离子浓度、氢离子浓度、反萃取剂浓度对反应的影响。实验结果表明:DBC萃取剂在盐酸介质中萃取浸取液中[Au3+]=0.307mg/L的最佳萃取条件为:[H+]=2.00mol/L,[Cl-]=1.00mol/l,O/A=1∶1,萃取时间=90s,DBC=50%(体积比)。在此条件下一级萃取率可达97.33%。选用亚硫酸钠作为反萃剂。通过实验总结出用该反萃剂从负载[Au3+]=0.272mg/L的DBC萃取剂中反萃金的最佳反萃条件为:亚硫酸钠浓度=5%,反萃时间=90s,O/A=5∶2。在此条件下,一级反萃率为95.04%。  相似文献   

4.
络合萃取法处理甲苯二异氰酸酯氢化废水的试验研究   总被引:1,自引:0,他引:1  
研究络合萃取处理甲苯二异氰酸酯(TDI)生产氢化废水的工艺过程,考察了pH值、萃取相比、萃取温度、萃取时间等因素对萃取效果的影响,并通过正交试验对工艺条件进行优化,结果表明:采用酸性含磷类萃取剂,煤油为稀释剂,在pH值为8.0、萃取温度为25℃、萃取时间为3 min、萃取相比为1.5︰1优化条件下,对氢化废水中苯胺类的萃取率大于97%。负载萃取剂以31%的盐酸作反萃剂,反萃取相比为20︰1条件下可实现完全再生,反萃液经处理可回收2,4-二氨基甲苯和2,6-二氨基甲苯。  相似文献   

5.
采用30%N902从除杂后的电镀污泥氨浸液中回收金属镍。在萃取原料液pH=9,相比(A/O)=2∶1,反应时间为5min条件下可使镍的萃取率达到99%。负载有机相经水洗后,用2mol/L A/O=1∶1的硫酸进行反萃,反萃时间为30min,反萃级数为8级,得到产品硫酸镍。硫酸镍溶液中镍离子含量90g/L,其它杂质达到产品质量要求。  相似文献   

6.
采用研究相对较少的螯合萃取剂——丁二酮肟-氯仿萃取体系螯合萃取分离Pt(Ⅳ)、Pd(Ⅱ),用NaOH反萃,对丁二酮肟-氯仿体系萃取铂、钯的性能进行了研究.实验考察了萃取的反应温度、混相时间、反应剂用量、相比、酸度、氢氧化钠浓度以及干扰离子对钯的萃取率及反萃率的影响.在反应温度为70℃、pH=1、相比V(O)/V(A)=1∶1、混相时间为5min的最佳萃取条件下,进行含铂、钯废催化剂浸出液的分离,系数为βPd/P1=12629,其它共存离子Fe(Ⅲ)、Al(Ⅲ)、Mg(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)、Cu(Ⅱ)的萃取率小于1%.  相似文献   

7.
研究了4-溴-2-氟碘苯萃余废水中碘的回收方法。25℃下,测定了苯、环己烷等7种萃取剂对碘萃取的分配常数及环己烷对碘萃取的分配曲线。研究选用了萃取率与分配常数相对较高,毒性相对较低的环己烷为萃取剂,并探讨了萃取剂、反应时间、溶液pH值、温度、反萃剂等因素对碘单质去除率的影响。结果表明在室温20℃,不调节废水pH值,相比为1:5、萃取时间10 min的条件下,碘的萃取率可达到88%。在室温20℃,相比为4:5的条件下,采用0.1 mol/L的氢氧化钾为反萃剂,碘的单级反萃率可达到90%。  相似文献   

8.
本工作以高位阻叔胺萃取剂N34 18自盐酸溶液中对铂 (Ⅳ )的萃取进行了研究。对萃取时间、水相的酸度、水相的 pH值、萃取剂的浓度、稀释剂等影响因素进行了较全面的分析。用NaOH作为反萃剂对反萃率进行了研究。应用连续变换法、饱和法 ,斜率法确定了萃合物的组成 ,萃合物的组成为 1 4。  相似文献   

9.
采用络合萃取法处理模拟金刚烷胺制药废水,比较了苯、CCl4和P204等11种萃取剂对水溶液中金刚烷胺的萃取效果,考察了溶液初始pH值、稀释剂的类型、萃取剂与稀释剂的配比和油/水比等因素对萃取效率的影响,并对萃取液进行了反萃取分离研究.结果表明,在水溶液中金刚烷胺浓度为1000 mg·L-1,溶液初始pH值为8.0~10.0,油/水比为1∶1的条件下,采用P204与正辛醇体积比3∶2的复配萃取剂进行萃取分离,金刚烷胺萃取率可以达到99.0%以上,当金刚烷胺浓度增加至10.0 g·L-1时,萃取率仍可以保持在97.0%以上;以2.0 mol·L-1的HCl溶液为反萃取剂,按照油/水比为1∶1可将51.1%的金刚烷胺从萃取剂中反萃分离.  相似文献   

10.
采用30%N902从除杂后的电镀污泥氨浸液中回收金属镍。在萃取原料液pH=9,相比(A/O)=2:1,反应时间为5min条件下可使镍的萃取率达到99%。负载有机相经水洗后,用2mol/L A/O=1:1的硫酸进行反萃,反萃时间为30min,反萃级数为8级,得到产品硫酸镍。硫酸镍溶液中镍离子含量〉90g/L,其它杂质达到产品质量要求。  相似文献   

11.
采用生物表面活性剂鼠李糖脂(rhamnolipid,RL)构建RL/异辛烷/正己醇的逆胶束体系,并研究了该体系中纤维素酶后萃过程的影响因素.分别考察了后萃水相pH值、振荡时间、离子种类和强度以及添加短链醇对纤维素酶的后萃率和酶活回收率的影响.结果表明,后萃水相最佳pH值为7.0,振荡时间以30 min为最佳,后萃水相中离子强度以0.15 mol·L-1KCl最佳,正丁醇的最佳添加量为2%.在最佳实验条件下,纤维素酶的后萃率和酶活回收率分别可以达到76.22%和93.39%.生物表面活性剂RL构建的逆胶束体系对纤维素酶的后萃效果较佳,且RL具有高生物降解性,低临界胶束浓度等优点,应用前景广阔.  相似文献   

12.
宋永会  魏健  马印臣  曾萍 《环境科学研究》2014,27(12):1513-1518
采用络合萃取法处理金刚烷胺制药废水,考察了初始pH、络合剂种类、稀释剂配比、油/水相比和反应温度等对废水中金刚烷胺萃取效率的影响,并对萃取剂中金刚烷胺进行了反萃取分离回收. 结果表明:采用V(P204)〔P204为二(2-乙基己基磷酸)〕∶V(正辛醇)为3∶2的复配萃取剂处理金刚烷胺制药废水,在初始pH为8.0、油/水相比为1∶1和温度为25 ℃的条件下,能够去除废水中99.7%以上的金刚烷胺;在反萃取过程中,V(P204)∶V(正辛醇)为1∶4的复配萃取剂可以获得更高的反萃取效率,以1.0 mol/L的HCl溶液为反萃取剂,当油/水相比为1∶1时,可将51.7%的金刚烷胺从萃取剂中反萃分离,回收得到的金刚烷胺盐酸盐溶液可以回用到生产工艺中,P204-正辛醇复配萃取剂可在萃取和反萃取过程中多次重复使用.   相似文献   

13.
铜镍电镀退镀废液资源化处理工艺   总被引:3,自引:0,他引:3  
针对硝酸型铜镍退镀废液,确定了蒸馏法回收硝酸、溶剂萃取法分离提取铜、沉淀分离法回收镍的工艺路线.探讨了采用P507煤油体系萃取分离硝酸介质中的铜和镍及用硫酸反萃铜的条件及影响规律,确定了最佳工艺参数.结果表明,硝酸回收率可达97.8%;当最佳萃取工艺条件为:料液浓度Cu 15~20mg/mL,Ni 5~10 mg/mL,料液pH为1~2,萃取剂体积分数35%,皂化度60%,相比为1∶1,振荡时间2min,温度20℃~25℃,铜的一级萃取率达90%以上,铜镍分离系数为75,经过三级逆流萃取废液中的铜镍已达到完全分离;以NaOH作沉淀剂,溶液的pH为10~11,镍的回收率可达99.9%.经上述处理后,使排放液达到国家工业废水排放标准要求.  相似文献   

14.
通过分级提取实验 ,结合矿物成分和化学成分分析 ,对广东凡口铅锌尾矿的新尾矿和 1号尾矿库不同氧化程度尾矿的矿物组成、重金属含量及其形态进行了研究和对比 .新尾矿中的黄铁矿含量很高 (约 3 1% ) ,铅锌的含量分别高达 0 7%和 1 2 %以上 ,重金属元素主要赋存于金属硫化物中 .1号尾矿库样品中的黄铁矿含量 <10 % ,重金属元素也明显低于新尾矿 .在表层氧化带 (硬化层 ) ,硫化物的快速氧化导致大量次生矿物沉淀 ,锌大量吸附于 (氢 )氧化铁表面 ,可迁移性大 ;铅则主要形成次生难溶矿物 (如铅矾 ) ;次氧化带以硫化物的缓慢淋溶作用为主 ,难以形成次生矿物 ,Pb、Zn的流失比例大于 70 % .常用于矿山环境治理的尾矿覆盖方法往往使尾矿处于次氧化环境 .上述研究结果表明 ,这些方法不一定能够阻滞污染元素的迁移 .此外 ,本次研究采用Dold提出的分级提取法 ,发现方铅矿的溶解主要发生在第 2步 (提取液 :pH =4 5 ,1moL L- 1 NH4 Ac) ,而其它硫化物的溶解主要在第 6步 ,这可能是Ac- 与Pb2 + 的络合作用所造成的 ,表明提取液中含Ac- 的分级提取方法不宜用于评价铅的活性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号