首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2020年天津市两次重污染天气污染特征分析   总被引:9,自引:5,他引:4  
为了解2020年天津市两次重污染天气污染特征,基于2020年1~2月高时间分辨率的在线监测数据,对天津市2020年1月16~18日(重污染过程Ⅰ)和2020年2月9~10日(重污染过程Ⅱ)进行分析,结果表明,两次重污染过程均呈现前期区域输送和后期本地不利气象条件叠加双重影响的特点,重污染过程期间平均风速均较低,平均相对湿度接近70%,部分时段接近饱和,边界层高度低于300 m,水平和垂直扩散条件均较差.与重污染过程Ⅰ相比,重污染过程Ⅱ主要污染物浓度和污染程度均降低,尤其是NO2浓度下降明显,重污染过程Ⅱ北部地区PM2.5和CO浓度较高.两次重污染过程PM2.5中化学组分浓度和占比发生明显变化,重污染过程Ⅰ二次无机离子(SO42-、NO3-和NH4+)、EC和Ca2+平均浓度较高,OC和Cl-平均浓度略低于重污染过程Ⅱ,K+平均浓度低于重污染过程Ⅱ.与重污染过程Ⅰ相比,受燃烧源增加和移动源大幅降低影响,重污染过程Ⅱ中SO42-、OC和K+在PM2.5中占比明显上升,NO3-和EC在PM2.5中占比明显下降;工业持续生产使重污染Ⅱ中NH4+和Cl-在PM2.5中占比相对较高;工地的停工使两次重污染过程中Ca2+占比均较低.PMF解析结果表明,重污染过程Ⅰ中PM2.5来源为二次离子、燃煤和工业、机动车、扬尘、烟花爆竹及生物质燃烧,贡献率分别为53.8%、20.2%、18.6%、6.3%和1.1%;重污染过程Ⅱ中各源对PM2.5的贡献率分别为48.3%、28.2%、8.7%、2.6%和12.2%.与重污染过程Ⅰ相比,重污染过程Ⅱ燃煤和工业、烟花爆竹及生物质燃烧对PM2.5贡献率明显上升,二次离子、机动车和扬尘贡献率明显下降,尤其是机动车和扬尘,贡献率分别下降53.2%和58.7%.  相似文献   

2.
2020年春节期间天津市重污染天气污染特征分析   总被引:5,自引:0,他引:5  
为了解春节期间重污染天气污染特征,基于城区点位2020年1月高时间分辨率的在线监测数据,开展天津市春节期间重污染分析.结果表明:区域污染物输送叠加本地污染物排放和不利气象条件导致春节重污染的发生,重污染期间天津市平均风速为0.97 m·s-1,平均相对湿度为70%左右,边界层高度为210 m,水平和垂直扩散条件均较差.春节重污染期间,天津市PM2.5、SO2、NO2和CO平均浓度分别为219、14、46 μg·m-3和1.9 mg·m-3,与春节前重污染相比,春节重污染期间污染程度有所降低,尤其是NO2浓度下降明显.PM2.5浓度空间分布表明,天津远郊区依然存在烟花爆竹燃放情况.春节重污染期间,城区PM2.5中主要化学组分为二次无机离子(NO3-、SO42-和NH4+)、OC、K+和Cl-,平均浓度分别为96.4、22.5、9.5和8.9 μg·m-3,在PM2.5中占比分别为41.3%、9.7%、4.1%和3.8%.与春节前重污染相比,受移动源减少、工业企业排放降低、工地停工影响,春节重污染期间NO3-、SO42-、NH4+、EC和Ca2+浓度及其在PM2.5中占比明显下降;受烟花爆竹燃放影响,OC、K+、Cl-和Mg2+浓度及其在PM2.5中占比均上升.与清洁天气相比,春节重污染期间PM2.5中二次无机化学转化明显增强.PMF解析结果表明,春节重污染期间,天津市城区PM2.5的主要来源为二次无机盐、燃煤和工业、烟花爆竹及生物质燃烧、机动车和扬尘,贡献分担率分别为40.1%、30.6%、20.6%、6.9%和1.8%.与春节前重污染相比,春节重污染期间二次无机盐、机动车和扬尘贡献率分别下降25.5%、62.9%、71.4%,燃煤和工业贡献率上升51.5%,烟花爆竹及生物质燃烧源显著上升.无论是重污染还是非重污染,常态化还是特殊时期,二次无机盐、燃煤和工业排放始终是天津市PM2.5最主要的来源,产业结构和能源结构的调整始终是天津大气污染防治的主要方向.  相似文献   

3.
典型沿海城市采暖期细颗粒物组分特征及来源解析   总被引:6,自引:6,他引:0  
李明燕  杨文  魏敏  朱红晓  刘厚凤 《环境科学》2020,41(4):1550-1560
为明确威海市采暖期细颗粒物的组分及来源,于2018年1~3月在威海市3个空气质量例行监测点采集了环境空气PM2.5样品,分析OC、EC、水溶性离子及元素组分特征,利用PMF模型解析PM2.5的来源.结果表明,采样期间威海市PM2.5日均质量浓度为(33.80±22.45)μg·m-3,NO3-、NH4+、SO42-、OC和EC是其主要组分.作为沿海城市其Cl-占比相对较高,同时PM2.5组分特征体现出颗粒物成分受本地工业特征污染物排放的影响.NO3-/SO42-和OC/EC比值均表明威海市采暖期移动源对PM2.5贡献大;水溶性离子中酸碱离子比例分析表明,威海市采暖期PM2.5呈弱碱性,NH4+过量,主要以NH4NO3和(NH42SO4等形式存在.污染时段威海市二次污染物浓度上升明显,主要组分NH4+、NO3-、SO42-、OC和EC质量浓度是清洁时段的4.21、5.27、3.23、2.02和1.81倍.源解析结果表明,二次气溶胶占PM2.5的32.4%~36.0%,移动源(15.6%~18.9%)、燃煤源(12.1%~17.8%)、生物质燃烧源(9.0%~10.4%)和扬尘(8.6%~11.3%)是威海市环境空气PM2.5的主要来源,而工艺过程源(2.1%~8.3%)、非道路移动源(2.4%~3.7%)和海盐(3.5%~5.6%)贡献比例较小.  相似文献   

4.
刘素  马彤  杨艳  高健  彭林  曹力媛  逄妮妮  张浩杰 《环境科学》2019,40(4):1537-1544
为研究太原市城区冬季PM2.5污染特征及来源,于2017年1月对PM2.5及其化学组分(水溶性离子、碳组分和微量元素)、气态污染物(SO2、NO2)进行在线观测,结合气象数据,分析了清洁天和污染天PM2.5及其化学组分特征,并利用正定矩阵因子分析法(positive matrix factorization,PMF)对PM2.5进行来源解析.结果表明,2017年1月太原市城区污染天PM2.5质量浓度(239.92 μg·m-3)为清洁天的5.70倍,污染天PM2.5主要化学组分SO42-、NO3-、NH4+、Cl-、OC和EC分别为清洁天的7.04、5.76、6.51、5.62、4.06和4.70倍;污染天硫的氧化速率(SOR)和氮的氧化速率(NOR)分别为0.12和0.19,明显高于清洁天,说明污染天二次转化程度更高;PMF解析结果显示,污染天二次源(35.06%)、燃煤源(30.19%)和机动车源(24.25%)较清洁天分别增长18.03%、7.39%和2.10%,说明太原市城区污染天在管控机动车和燃煤等一次排放源的基础上,更应该注意对二次源前体物的控制.  相似文献   

5.
成都市冬季3次灰霾污染过程特征及成因分析   总被引:6,自引:6,他引:0  
基于成都市大气环境超级观测站气态污染物和PM2.5中组分在线监测数据,对2019~2020年成都市3次灰霾污染过程气象要素和组分特征进行分析,采用CMB模型模拟获得研究期间PM2.5污染来源及变化趋势,剖析各污染过程成因.结果表明:① 3次污染过程均发生在相对湿度和温度持续上升,风速和边界层高度持续降低的不利气象条件下,日均相对湿度均大于70%,日均温度均大于8℃,日均风速均低于0.8 m ·s-1,日均边界层高度均低于650 m;② 3次污染过程中主要组分均为NO3-、OC、NH4+和SO42-,其中NO3-质量浓度和占比污染时段较清洁时段增长倍数均高于其他组分,分别增加了1.47~2.09倍和0.22~0.35倍,NO3-是成都市冬季PM2.5污染的关键组分;③ 3次污染过程SOR均值为0.40,NOR均值为0.27,SO2和NOx的二次转化程度较高,SO2向SO42-转化以夜间非均相氧化反应为主,NOx向NO3-转化以非均相水解反应为主;④ 3次过程变化特征略有不同,过程Ⅰ呈现出明显的二次硝酸盐主导的特征,过程Ⅱ PM2.5浓度上升过程中主要受燃煤排放影响,PM2.5浓度高值时段主要受NO3-影响,过程Ⅲ总体仍为二次硝酸盐主导的特征,但部分污染时段化石燃料燃烧源排放有所增加;⑤二次硝酸盐、二次硫酸盐、机动车和燃煤源为研究期间主要污染来源,PM2.5浓度与二次硝酸盐贡献率正相关,与扬尘源贡献率负相关.  相似文献   

6.
肖致美  徐虹  李立伟  李鹏  元洁  唐邈  杨宁  郑乃源  陈魁 《环境科学》2020,41(10):4355-4363
为了解天津市PM2.5的污染特征及来源,基于2017~2019年高时间分辨率的在线监测数据,对PM2.5浓度、化学组分和来源进行了分析.结果表明,2017~2019年,天津PM2.5平均浓度为61 μg ·m-3,PM2.5中主要化学组分为NO3-、OC、NH4+、SO42-、EC和Cl-,在PM2.5中占比分别为17.7%、12.6%、11.5%、10.7%、3.4%和3.1%.从年分布上看,PM2.5及主要化学组分浓度均呈现下降趋势,NO3-和NH4+在PM2.5中占比上升,SO42-、OC和EC在PM2.5中占比下降,Cl-在PM2.5中占比略上升,其他组分K+、Ca2+和Na+浓度及在PM2.5中占比均上升.PM2.5及主要组分浓度在采暖季相对较高,非采暖季相对较低,夏秋季SOR和NOR较高,二次转化强,PM2.5中二次无机离子(NO3-、NH4+和SO42-)占比相对较高.当PM2.5浓度为优良级别时,PM2.5中二次无机离子占比较低,OC占比较高,SOC生成较高,Ca2+和Na+占比相对较高;PM2.5浓度为轻度及以上污染级别时,随着污染程度加重,PM2.5中二次无机离子占比明显上升,OC占比基本稳定,EC和Cl-占比略升,K+、Ca2+和Na+等离子占比下降.PM2.5浓度处于中度及以上污染级别时,机动车影响明显增加.PMF解析结果表明,2017~2019年,天津市PM2.5的主要来源为二次源、机动车排放、工业和燃煤排放以及扬尘.其中机动车排放的贡献分担率上升,二次源、扬尘的贡献分担率略升,工业和燃煤源的贡献分担率略降.对天津来说,机动车、燃煤和工业排放始终是PM2.5最主要的一次污染来源,产业结构和能源结构的调整以及机动车的管控是大气污染防治的主要方向.  相似文献   

7.
天津市2017年重污染过程二次无机化学污染特征分析   总被引:13,自引:9,他引:4  
基于2017年天津市超级观测站数据,筛选出7次典型重污染过程,从污染物浓度、二次转化方面分析重污染过程二次无机化学污染特征.结果表明,重污染期间NO3-和SO42-浓度较清洁天气增长幅度最高,显著高于PM2.5的增长程度,说明二次无机转化是导致重污染期间PM2.5污染加重的重要原因;下半年PM2.5和SO2污染程度较上半年减轻,与秋冬季采取燃煤治理等活动有关;重污染期间NO2/SO2比值为1.5~19.6,其中下半年NO2/SO2比值显著高于上半年,说明在各项污染源管控下移动源的影响比例相对增加;大部分重污染期间NO3-浓度大于SO42-浓度,SOR值高于NOR值,说明重污染期间硫酸盐和硝酸盐转化均较重要;在SO2浓度显著降低的情况下,重污染期间SO42-浓度并未明显降低,说明除二次无机转化外,硫酸盐生成还受其他因素影响.  相似文献   

8.
为研究天津市高校道路扬尘PM2.5中水溶性离子的污染特征、来源及校内外差异,于2018年7—8月采集天津市9所高校道路扬尘样品,用离子色谱法对其中8种水溶性离子(Ca2+、K+、Mg2+、Na+、Cl-、NH4+、NO3-、SO42-)进行分析.结果显示:①水溶性离子占PM2.5的11.65%,PM2.5中占比大于1%的离子有Ca2+和SO42-,其中Ca2+最多,占到总水溶性无机离子的65.75%;②入校道路离子含量(12.76%)稍高于校内道路(11.11%),其中8种离子含量的差异均无统计学意义;CE/AE(阴阳离子当量浓度比)值为9.59(远大于1),PM2.5呈较强碱性;③NH4+与SO42-、NO3-主要以(NH42SO4和NH4NO3的形态结合;④NO3-/SO42-的比值为0.45,说明固定源的贡献更大;⑤天津市高校道路扬尘PM2.5主要来源于海盐粒子、燃煤、机动车尾气、建筑水泥尘等.  相似文献   

9.
为了快速分析天津市区冬季以及重污染过程中PM2.5的化学组成特征及来源,本研究于2017年1月利用在线监测仪器快速采集了天津市区环境受体中PM2.5及其化学组分的小时数据,并通过PMF(positive matrix factorization,正定矩阵因子分解法)模型解析了天津市区2017年1月及重污染过程中PM2.5的主要贡献源类,分析了重污染过程中排放源的变化趋势.结果表明:2017年1月天津市区PM2.5浓度为6.0~449.0 μg·m-3,平均值为153.3 μg·m-3.NO3-、SO42-、NH4+是PM2.5中水溶性离子的主要组分,三者之和占水溶性离子总量的88.3%.NH4+与Cl-、NO3-、SO42-均表现出显著的正相关性(r=0.82,0.95,0.97;p<0.01).NO3-和SO42-r=0.90;p<0.01),Ca2+与Mg2+r=0.65;p<0.01)均表现出显著的相关性,说明它们分别具有较高的同源性.OC和EC也是PM2.5的重要组成部分,两者之和占PM2.5质量浓度的20.4%.重污染过程中,PM2.5及其主要离子的浓度显著的增加(p<0.01),并存在较高的二次离子生成.PMF解析结果表明,二次源类是天津市区2017年1月PM2.5的首要源类,分担率为38.1%,其次为机动车源(分担率为25.6%)、燃煤源(分担率17.1%)、扬尘(分担率10.1%)和生物质燃烧(分担率9.1%).重污染过程中,二次源是PM2.5的主要贡献源类,分担率达到39.3%;说明重污染期间存在显著的二次转化及二次粒子的积累过程.重污染发生演变过程中,二次源、机动车源和燃煤源对PM2.5贡献表现出显著增加的趋势,而扬尘和生物质燃烧的贡献则没有显著增加.  相似文献   

10.
为了探明昆山市不同污染条件下PM2.5中水溶性无机离子的污染特征以及本地源排放占主导时对污染过程的贡献,本研究使用昆山市2017年3月—2018年2月期间PM2.5、水溶性无机离子及其气态前体物数据,分别探讨了水溶性无机离子及其气态前体物在污染天气和清洁天气情况下的变化特征,揭示了它们在污染天气和清洁天气下的变化机制.同时结合周围城市PM2.5浓度筛选出昆山市秋、冬季局地污染事件,利用主成分分析(principle component analysis,PCA)方法对筛选出的局地污染事件中的水溶性无机离子数据进行了来源解析,定量评估了本地源排放占主导时不同水溶性无机离子对灰霾污染事件过程中PM2.5浓度的贡献.结果表明:①SO42-、NO3-、NH4+(合称SNA)是PM2.5的重要组分,且其相对贡献随着大气污染加重而变化.3种离子在清洁和污染条件下对PM2.5的相对贡献分别是49.4%~62.3%和52.7%~65.9%.在3种主要的水溶性无机离子中,NO3-浓度最高,其次是SO42-和NH4+.随着污染加重,SO42-的贡献率下降,而NO3-的贡献率上升.②污染天气下3种离子日变化规律不同,且存在明显季节差异.其中秋冬季SO42-和NH4+与各自气态前体物变化趋势一致且为单峰型;NO3-为单峰型而其前体物则为双峰型.另外,NO3-与NH4+日变化趋势较为一致,表明昆山地区SNA多以NH4NO3形式存在.③2017—2018年秋冬季由本地源排放占主导的污染天气下,PM2.5的主要来源是二次气粒转化、建筑扬尘、生物质燃烧和燃煤;除了Mg2+和Ca2+,其他水溶性离子浓度均低于非本地源排放占主导的污染天气下的浓度.  相似文献   

11.
方婧  余博阳 《环境科学》2013,34(10):4050-4057
采用实验室柱淋溶方法,考察了纳米CeO2、纳米TiO2和纳米Al2O3材料在不同土壤中的运移行为,分析了纳米材料在土壤中运移能力与土壤性质的相关性,并采用胶体运移动力学模型估算了纳米材料在土壤中的最远运移距离.结果表明,纳米CeO2和纳米TiO2在试验的大部分土壤中有很强的运移能力,而纳米Al2O3仅在试验的酸性土壤中有较强的运移能力,在其他土壤中几乎被全部截留.纳米材料在土壤中运移的机制非常复杂,静电作用、土壤表面电荷异质性、团聚作用、张力作用(straining)以及过滤熟化作用(ripening)均对纳米材料的运移有着重要的影响.纳米CeO2的运移能力与土壤Zeta电位显著负相关;纳米TiO2的运移能力与土壤黏粒含量显著负相关,与土柱渗透系数显著正相关;纳米Al2O3的运移能力与土壤pH显著负相关,与土柱渗透系数显著正相关.模型估算的纳米CeO2、纳米TiO2和纳米Al2O3在试验土壤中的最远运移距离分别为52~69 043、31~332和<10~5 722 cm.纳米材料在一些土壤中的最远运移距离远远大于30 cm表层土壤的深度,意味着纳米材料在这些土壤中有向深层土壤运移的可能.  相似文献   

12.
紫外光照下盐酸环丙沙星的光解性能   总被引:1,自引:0,他引:1  
本研究重点考察了盐酸环丙沙星初始浓度、硝酸铅、硝酸镉、氯化铅、氯化镉等重金属盐对盐酸环丙沙星光降解性能影响.结果表明,黑暗条件下环丙沙星无降解;紫外光照可以有效去除环丙沙星,且环丙沙星的光降解速率随其初始浓度的增大而降低;硝酸铅和硝酸镉(除0.006 mmol·L~(-1)体系外)可以促进环丙沙星的光降解,且随摩尔比的增大(即硝酸盐浓度的降低),环丙沙星的半衰期逐渐增大;随着摩尔比的增大(即氯化盐浓度的降低),氯化铅和氯化镉先促进后抑制环丙沙星的光降解.  相似文献   

13.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别.  相似文献   

14.
邯郸市大气复合污染特征的监测研究   总被引:8,自引:2,他引:6  
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.  相似文献   

15.
沧州市大气污染特征观测研究   总被引:1,自引:1,他引:1  
王永宏  胡波  王跃思  刘伟  张武 《环境科学》2012,33(11):3705-3711
利用沧州2009年7月~2011年7月的NOx(NOx=NO+NO2)、O3、SO2以及PM10的观测数据,分析了沧州市大气污染物的日变化、月平均变化、年变化以及季节平均变化特征.结果表明,NOx、PM10日变化为双峰型,O3为单峰.SO2日变化也呈现为双峰型,但是其变化幅度较平缓.NO、NO2、NOx、SO2有较相同的季节变化趋势.NO、NO2、NOx、SO2及PM10冬季值最大,分别为(30.0±18.9)μg·m-3、(50.5±19.8)μg·m-3、(80.5±38.7)μg·m-3、(62.1±34.7)μg·m-3、(201.6±98.5)μg·m-3.臭氧夏季浓度最高,其月均值为(88.0±22.3)μg·m-3.NO、NO2、NOx、O3、SO2及PM10年均值分别为(18.9±14.5)μg·m-3、(37.6±13.0)μg·m-3、(56.5±27.5)μg·m-3、(49.9±16.3)μg·m-3、(31.6±19.5)μg·m-3、(156.7±79.1)μg·m-3.秋冬季污染物主要为NOx(NOx=NO+NO2)、SO2以及PM10,夏季污染物主要为O3.  相似文献   

16.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

17.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

18.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   

19.
邯郸市大气颗粒物污染特征的监测研究   总被引:6,自引:1,他引:5  
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.  相似文献   

20.
2013年北京市NO_2的时空分布   总被引:4,自引:2,他引:2  
对2013年北京市35个自动空气质量监测子站的NO2数据进行分析,探讨NO2的时间分布特征、空间分布特征以及与PM2.5和大气氧化性的相关性关系.结果表明,NO2浓度由高到低的季节依次是冬季、秋季、春季和夏季,平均浓度分别为66.6、58.3、54.7μg·m-3和45.8μg·m-3;NO2浓度由高到低的监测站依次为交通站、城区站、郊区站和区域站,年均浓度分别为78.6、57.9、48.5μg·m-3和40.3μg·m-3.NO2月均浓度呈波浪型分布,在1月份、3月份、5月份和10月份各出现一个峰值.整体来看,区域站NO2日变化曲线呈现单峰型分布,其他站点为双峰型分布.2013年NO2浓度呈现"反周末效应",即周末大部分时段NO2浓度高于工作日.分地区来看,年均NO2浓度由高到低的依次是城六区、西南部、东南部、西北部和东北部.各站点NO2浓度与PM2.5和OX浓度均为显著正相关,表明NO2可以通过增加前体物浓度和增强大气氧化性两方面造成PM2.5浓度升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号