首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense(FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated(100% water holding capacity) conditions at 30℃ for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential(down to- 350 m V) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore,incorporating soil with straw(rice or maize straw) at a rate of 3.0 tons/ha under 100%water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30℃.  相似文献   

2.
Radionuclides, like radioiodine(~(129)I), may escape deep geological nuclear waste repositories and migrate to the surface ecosystems. In surface ecosystems, microorganisms can affect their movement. Iodide uptake of six bacterial strains belonging to the genera Paenibacillus,Pseudomonas, Burkholderia and Rhodococcus isolated from an acidic boreal nutrient-poor bog was tested. The tests were run in four different growth media at three temperatures. All bacterial strains removed iodide from the solution with the highest efficiency shown by one of the Paenibacillus strains with 99% of iodide removed from the solution in one of the used growth media. Pseudomonas, Rhodococcus and one of the two Paenibacillus strains showed highest iodide uptake in 1% yeast extract with maximum values for the distribution coefficient(K_d) ranging from 90 to 270 L/kg DW. The Burkholderia strain showed highest uptake in 1% Tryptone(maximum K_d170 L/kg DW). The Paenibacillus strain V0-1-LW showed exceptionally high uptake in 0.5% peptone + 0.25% yeast extract broth(maximum K_d 1,000,000 L/kg DW). Addition of 0.1% glucose to the 0.5% peptone + 0.25% yeast extract broth reduced iodide uptake at 4℃ and 20℃ and enhanced iodide uptake at 37℃ compared to the uptake without glucose. This indicates that the uptake of glucose and iodide may be competing processes in these bacteria. We estimated that in in situ conditions of the bog,the bacterial uptake of iodide accounts for approximately 0.1%–0.3% of the total sorption of iodide in the surface, subsurface peat, gyttja and clay layers.  相似文献   

3.
A bacterial strain ZWS11 was isolated from sulfonylurea herbicide-contaminated farmland soil and identified as a potential nicosulfuron-degrading bacterium. Based on morphological and physicochemical characterization of the bacterium and phylogenetic analysis of the 16S rRNA sequence, strain ZWS11 was identified as Alcaligenes faecalis. The effects of the initial concentration of nicosulfuron, inoculation volume, and medium pH on degradation of nicosulfuron were investigated. Strain ZWS11 could degrade 80.56% of the initial nicosulfuron supplemented at 500.0 mg/L under the conditions of pH 7.0, 180 r/min and 30°C after incubation for 6 days. Strain ZWS11 was also capable of degrading rimsulfuron, tribenuron-methyl and thifensulfuron-methyl. Four metabolites from biodegradation of nicosulfuron were identified, which were 2-aminosulfonyl-N, N-dimethylnicotinamide (M1), 4, 6-dihydroxypyrimidine (M2), 2-amino-4, 6-dimethoxypyrimidine (M3) and 2-(1-(4,6-dimethoxy-pyrimidin-2-yl)-ureido)-N,N-dimethyl-nicotinamide (M4). Among the metabolites detected, M2 was reported for the first time. Possible biodegradation pathways of nicosulfuron by strain ZWS11 were proposed. The degradation proceeded mainly via cleavage of the sulfonylurea bridge, O-dealkylation, and contraction of the sulfonylurea bridge by elimination of a sulfur dioxide group. The results provide valuable information for degradation of nicosulfuron in contaminated environments.  相似文献   

4.
Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230 ± 35 kg/m~3, which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl-, S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl-and S were lower.This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants.  相似文献   

5.
In the last 40 years, a large area of savanna vegetation in Central Brazil (Cerrado) has been converted to agriculture, with intensive use of fertilizers, irrigation and management practices. Currently, the Cerrado is the main region for beef and grain production in Brazil. However, the consequences of these agricultural practices on NO, N2O and CO2 emissions from soil to atmosphere are still poorly investigated. The objectives of this study were to quantify soil emissions of NO-N, N2O-N and CO2-C in different no-till cultivation systems in comparison with native savanna vegetation. The agricultural areas included: (a) the maize and Brachiaria ruzizienses intercropping system followed by irrigated bean in rotation; (b) soybean followed by natural fallow; and (c) cotton planting over B. ruzizienses straw. The study was performed from August 2003 to October 2005 and fluxes were measured before and after planting, after fertilizations, during the growing season, before and after harvesting. NO-N fluxes in the soybean field were similar to those measured in the native vegetation. In the cornfield, higher NO-N fluxes were measured before planting than after planting and pulses were observed after broadcast fertilizations. During Brachiaria cultivation NO-N fluxes were lower than in native vegetation. In the irrigated area (bean cultivation), NO-N fluxes were also significantly higher after broadcast fertilizations. Most of the soil N2O-N fluxes measured under cultivated and native vegetation were very low (<0.6 ng N2O-N cm−2 h−1) except during bean cultivation when N2O-N fluxes increased after the first and second broadcast fertilization with irrigation and during nodule senescence in the soybean field. Soil respiration values from the soybean field were similar to those in native vegetation. The CO2-C fluxes during cultivation of maize and irrigated bean were twice as high as in the native vegetation. During bean cultivation with irrigation, an increase in CO2-C fluxes was observed after broadcast fertilization followed by a decrease after the harvest. Significantly lower soil C stocks (0-30 cm depth) were determined under no-tillage agricultural systems in comparison with the stocks under savanna vegetation. Fertilizer-induced emission factors of N oxides calculated from the data were lower than those indicated by the IPCC as default.  相似文献   

6.
Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09 mg/L/hr.Temperature, p H, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model(R~2= 0.9821) being obtained, the highest biodegradation efficiency of 19.03 mg/L/hr was reached compared to previous reports under the optimal conditions(30.71°C, pH 7.14, 4.23%(V/V) inoculum size and 157.1 mg/L initial atrazine concentration).Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine.  相似文献   

7.
Farmers in arsenic (As) contaminated areas of West Bengal, India grow rice during dry months (January to April) and use underground water for irrigation with As concentration above WHO defined critical (0.01 mg l−1) limit. In each season they add 50-150 mg As per m2 soil area. Thus growing rice under deficit irrigation in these areas will reduce As load in soil-root-shoot-leaf-grain continuum of rice ecosystem. Suitable deficit irrigation system has to be screened so that As load will decrease with insignificant reduction in grain yield. With this objective, rice grown under four irrigation regimes (i) continuous ponding (CP), (ii) intermittent ponding (IP), (iii) saturation (SAT) and (iv) aerobic (AER) was tested to assess the arsenic load in soil and various parts of rice on 45 and 80 days after transplanting (DAT). Conditions described in treatments ii, iii and iv were imposed during 15-45 DAT. Highest value (18.18 and 18.74 mg kg−1) of soil arsenic was attained under CP followed by IP, SAT and AER. Root arsenic content under AER at 45 and 80 DAT was at the lowest level (6.14 and 20.54 mg kg−1) and this was 31 and 7.0% lower as compared to CP. As content in leaf and grain attained the lowest values under IP. Grain yield insignificantly differed under IP (4.33 Mg ha−1) over CP (4.69 Mg ha−1). Compared to soil As, As added through irrigation showed stronger relationship with As status of various plant parts. Imposition of IP only during vegetative stage was found to be optimum in terms of reduction of As content in straw and grain respectively by 23 and 33% over farmers irrigation practice with insignificant decrease in grain yield.  相似文献   

8.
从湖南省石门县的As矿区附近采集不同程度As污染的农田土壤,通过盆栽添加秸秆和接种蚯蚓等处理来研究蚯蚓对玉米根际As、P形态转化及其吸收的影响,10周后收获玉米,测定了玉米生物量、体内As、P含量以及根际土壤中As、P形态.结果发现,与对照相比,不论土壤含As浓度高低,接种蚯蚓或同时施加秸秆增加玉米地上部和地下部的生物量,最高分别高出对照149%和222%.在中、高As土壤中,玉米地下部As浓度是蚯蚓和同时添加秸秆处理中最高,地上部是单接蚯蚓处理高于单施秸秆处理.不同As浓度下,地下部P浓度是单接蚯蚓处理的最高,地上部是单施秸秆处理的最高.逐级提取法分析根际土壤As、P形态表明,低As土壤中Ca-P影响玉米吸收As(r=0.981),中、高As土壤中晶态的Fe、Al水合氧化物态As不利于玉米吸收Al-P,相关性系数分别为0.953、0.997.接种蚯蚓或同时施加秸秆,促进根际土壤中非专性吸附态的、Fe和Al结合态的As形态含量以及O-P含量升高,在中、高As土壤中效果更明显.  相似文献   

9.
A bacterium strain Y3,capable of efficiently degrading pendimethalin,was isolated from activated sludge and identified as Bacillus subtilis according to its phenotypic features and 16 S rRNA phylogenetic analysis.This strain could grow on pendimethalin as a sole carbon source and degrade 99.5%of 100 mg/L pendimethalin within 2.5 days in batch liquid culture,demonstrating a greater efficiency than any other reported strains.Three metabolic products,6-aminopendimethalin,5-amino-2-methyl-3-nitroso-4-(pentan-3-ylamino) benzoic acid,and 8-amino-2-ethyl-5-(hydroxymethyl)-1,2-dihydroquinoxaline-6-carboxylic acid,were identified by HPLC-MS/MS,and a new microbial degradation pathway was proposed.A nitroreductase catalyzing nitroreduction of pendimethalin to 6-aminopendimethalin was detected in the cell lysate of strain Y3.The cofactor was nicotinamide adenine dinucleotide phosphate(NADPH) or more preferably nicotinamide adenine dinucleotide(NADH).The optimal temperature and pH for the nitroreductase were 30℃ and 7.5,respectively.Hg~(2+),Ni~(2+),Pb~(2+),Co~(2+),Mn~(2+) Cu~(2+),Ag~+,and EDTA severely inhibited the nitroreductase activity,whereas Fe~(2+),Mg~(2+),and Ca~(2+) enhanced it.This study provides an efficient pendimethalin-degrading microorganism and broadens the knowledge of the microbial degradation pathway of pendimethalin.  相似文献   

10.
Arsenic is a well-known human bladder and liver carcinogen, but its exact mechanism of carcinogenicity is not fully understood. Dimethylarsinic acid(DMAV) is a major urinary metabolite of sodium arsenite(i As~Ⅲ) and induces urinary bladder cancers in rats. DMAVand i As~Ⅲare negative in in vitro mutagenicity tests. However, their in vivo mutagenicities have not been determined. The purpose of present study is to evaluate the in vivo mutagenicities of DMAVand i As~Ⅲin rat urinary bladder epithelium and liver using gpt delta F344 rats.Ten-week old male gpt delta F344 rats were randomized into 3 groups and administered 0,92 mg/L DMAV, or 87 mg/L i As~Ⅲ(each 50 mg/L As) for 13 weeks in the drinking water. In the mutation assay, point mutations are detected in the gpt gene by 6-thioguanine selection(gpt assay) and deletion mutations are identified in the red/gam genes by Spi-selection(Spi-assay). Results of the gpt and Spi-assays showed that DMAVand i As~Ⅲhad no effects on the mutant frequencies or mutation spectrum in urinary bladder epithelium or liver. These findings indicate that DMAVand i As~Ⅲare not mutagenic in urinary bladder epithelium or liver in rats.  相似文献   

11.
It is generally accepted that a low dissolved oxygen(DO) concentration is more beneficial for achieving partial nitrification than high-DO. In this study, partial nitrification was not established under low-DO conditions in an intermittent aeration reactor for treating domestic wastewater. During the operational period of low-DO conditions(DO: 0.3 ±0.14 mg/L), stable complete nitrification was observed. The abundance of Nitrospira-like bacteria, which were the major nitrite-oxidizing bacteria, increased from 1.03 × 10~6to2.64 × 10~6cells/m L. At the end of the low-DO period, the batch tests showed that high-DO concentration(1.5, 2.0 mg/L) could inhibit nitrite oxidation, and enhance ammonia oxidation. After switching to the high-DO period(1.8 ± 0.32 mg/L), partial nitrification was gradually achieved. Nitrospira decreased from 2.64 × 10~6 to 8.85 × 10~5cells/m L. It was found that suddenly switching to a high-DO condition could inhibit the activity and abundance of Nitrospira-like bacteria, resulting in partial nitrification.  相似文献   

12.
Agricultural activities are the main source of non-point pollution in the Taihu Lake region, and therefore reduction of nitrogen (N) fertilizer is imperative in this area. A two-year experiment was carried out in a paddy field of summer rice-winter wheat rotation in the Taihu Lake area, and the rice growing seasons were mainly concerned in this research. Grain yield, N accumulation at rice crucial stages, N use efficiency, as well as N losses via run off during rice growing season were determined under different N application rates. No significant differences were observed in grain yield under N fertilizer application rates of 135-270 kg N ha−1 (50-100% of the conventional N application rate). Nitrogen accumulation before the heading stage (Pre-NA) accounted for 61-95% of total nitrogen absorption in mature rice, and was positively correlated with straw dry matter at harvest. Positive correlations were found between Pre-NA and straw (0.53, p < 0.05), and between grain yield and N accumulation after the heading stage (Post-NA) (0.58, p < 0.05), suggesting that increasing nitrogen accumulation after the heading stage is crucial for grain yield improvement. Poor agronomic efficiency of applied N (AEN), partial factor productivity of applied N (PFPN) and internal utilization efficiency of applied N (IEN) were observed for the higher soil fertility and a higher N fertilizer input; a simple N fertilizer reduction could significantly increase the nitrogen use efficiency in this region. Nitrogen loss via runoff was positively linearly related to N application rates and severely affected by rainfall events. The highest-yielding N rates were around 232-257 kg N ha−1, accounting for 86-95% of the conventional N application rates for the rice season. To reduce N losses and enhance N use efficiency, the recommendable N fertilization rate should be lower than that of the highest yield rate for rice season. Our findings indicated that nitrogen fertilizer reduction in the Taihu Lake area is feasible and necessary for maintaining grain yield, enhancing nitrogen use efficiency, and reducing environmental impact. However, the longer-term yield sustainability for the proper N application rate needs to be further investigated.  相似文献   

13.
The microbial reduction of U(VI) by Bacillus sp. dwc-2, isolated from soil in Southwest China, was explored using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). Our studies indicated that approximately 16.0% of U(VI) at an initial concentration of 100 mg/L uranium nitrate could be reduced by Bacillus sp. dwc-2 at pH 8.2 under anaerobic conditions at room temperature. Additionally, natural organic matter (NOM) played an important role in enhancing the bioreduction of U(VI) by Bacillus sp. dwc-2. XPS results demonstrated that the uranium presented mixed valence states (U(VI) and U(IV)) after bioreduction, which was subsequently confirmed by XANES. Furthermore, the TEM and high resolution transmission electron microscopy (HRTEM) analysis suggested that the reduced uranium was bioaccumulated mainly within the cell and as a crystalline structure on the cell wall. These observations implied that the reduction of uranium may have a significant effect on its fate in the soil environment in which these bacterial strains occur.  相似文献   

14.
Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100 mg/L of indole within 24 hr. It still harbored relatively high indole degradation capacity within pH 4–9 and temperature 25°C–35°C. Experiments also showed that some heavy metals such as Mn2 +, Pb2 + and Co2 + did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography–mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater.  相似文献   

15.
The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice–wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~ 500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season (p < 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m2·hr) in the FACE, FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice–wheat field annual rotation ecosystem (p < 0.05).  相似文献   

16.
The objective of this study was to understand toxicity of mixture of nanoparticles (NPs) (ZnO and TiO2) and their ions to Escherichia coli. Results indicated the decrease in percentage growth of E. coli with the increase in concentration of NPs both in single and mixture setups. Even a small concentration of 1 mg/L was observed to be significantly toxic to E. coli in binary mixture setup (exposure concentration: 1 mg/L ZnO and 1 mg/L TiO2; 21.15% decrease in plate count concentration with respect to control). Exposure of E. coli to mixture of NPs at 1000 mg/L (i.e., 1000 mg/L ZnO and 1000 mg/L TiO2) resulted in 99.63% decrease in plate count concentration with respect to control. Toxic effects of ions to E. coli were found to be lesser than their corresponding NPs. The percentage growth reduction was found to be 36% for binary mixture of zinc and titanium ions at the highest concentration (i.e., 803.0 mg/L Zn and 593.3 mg/L Ti where ion concentrations are equal to the Zn ions present in 1000 mg/L ZnO NP solution and Ti+ 4 ions present in 1000 mg/L TiO2 NP solution). Nature of mixture toxicity of the two NPs to E. coli was found to be antagonistic. The alkaline phosphatase (Alp) assay indicated that the maximum damage was observed when E. coli was exposed to 1000 mg/L of mixture of NPs. This study tries to fill the knowledge gap on information of toxicity of mixture of NPs to bacteria which has not been reported earlier.  相似文献   

17.
The arsenic contamination in soil-water-plant systems is a major concern of where, the groundwater is being contaminated with arsenic (above 0.01 mg/L) in the Indian subcontinent. The study was conducted with organic matter to find out the reducing e ect on arsenic load to rice (cv. Khitish). It was observed that intermittent ponding reduced arsenic uptake (23.33% in root, 13.84% in shoot and 19.84% in leaf) at panicle initiation stage, instead of continuous ponding. A decreasing trend of arsenic accumulation (root > straw > husk > whole grain > milled grain) was observed in di erent plant parts at harvest. Combined applications of lathyrus + vermicompost + poultry manure reduced arsenic transport in plant parts (root, straw, husk, whole grains and milled grain) which was significantly at par (p > 0.05) with chopped rice straw (5 tons/ha ) + lathyrus green manuring (5 tons/ha) in comparison to control and corresponding soils. A significant negative correlation of arsenic with phosphorus (grain P with arsenic in di erent parts R2= 0.627–0.726 at p > 0.01) was observed. Similarly, soil arsenic had a negative correlation with soil available phosphorus (R2 = 0.822 at p > 0.001) followed by soil nitrogen (R2= 0.762 at p > 0.01) and soil potassium (R2 = 0.626 at p > 0.01). Hence, e ective management of contaminated irrigation water along with organic matter could reduce the arsenic build up to plants and soil.  相似文献   

18.
This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter(EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon(AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4 mg/L, combined with a coagulant dose of 40 mg/L at 20°C over a reaction time of 12 hr, produced the minimum AOC.  相似文献   

19.
Microbial response to CaCO3 application in an acid soil in southern China   总被引:1,自引:0,他引:1  
Calcium carbonate (CaCO3) application is widely used to ameliorate soil acidification. To counteract soil and bacterial community response to CaCO3 application in an acidic paddy soil in southern China, a field experiment was conducted with four different dosages of CaCO3 addition, 0, 2.25, 4.5 and 7.5?tons/ha, respectively. After one seasonal growth of rice, soil physicochemical properties, soil respiration and bacterial communities were investigated. Results showed that soil pH increased accordingly with increasing dose of CaCO3 addition, and 7.5?tons/ha addition increased soil pH to neutral condition. Moderate dose of CaCO3 application (4.5?tons/ha) significantly increased soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) content, enhanced soil respiration, while the excessive CaCO3 application (7.5?tons/ha) decreased these soil properties. High-throughput sequencing results illustrated that moderate dose of CaCO3 application increased the richness and alpha diversity of soil bacterial community. Compared with control, the relative abundance of Anaerolineaceae family belonging to Chloroflexi phylum increased by 38.7%, 35.4% and 24.5% under 2.25, 4.5 and 7.5?tons/ha treatments, respectively. Redundancy analysis (RDA) showed that soil pH was the most important factor shaping soil bacterial community. The results of this study suggest that proper dose of CaCO3 additions to acid paddy soil in southern China could have positive effects on soil properties and bacterial community.  相似文献   

20.
水稻秸秆浸泡液对铜绿微囊藻生理特性的影响   总被引:5,自引:4,他引:1  
苏文  孔繁翔  于洋  贾育红  张民 《环境科学》2013,34(1):150-155
室内利用流式细胞仪对暴露于不同浓度水稻秸秆浸泡液下铜绿微囊藻的细胞生长、细胞膜完整性、膜电位、酯酶活性进行了为期15 d的检测,研究了水稻秸秆浸泡液对铜绿微囊藻生理特性的影响.结果发现,浸泡5 d的水稻秸秆液可以抑制藻的生长,呈明显的浓度抑制型变化;PI荧光检测显示暴露于浸泡液的各组细胞(>98%)的细胞膜保持高度完整;FDA荧光检测显示与对照组相比,第1、4d处理组酯酶活性增强和减小的细胞都有增加,但活性下降的细胞数量明显多于活性增强的细胞,第7 d酯酶活性下降的细胞数量明显增加,而增强的细胞数量基本不变,第10、15 d酯酶活性正常的细胞数量增加显著,而酯酶活性下降的细胞数量明显减少,增强的细胞变化幅度较小;DIOC6(3)荧光检测显示膜电位在前7 d变化显著,第10、15d变化程度减弱,与酯酶活性变化趋势一致.分析表明,浸泡液存在促进和抑制藻细胞生长的两种作用,抑制作用占据优势,随着暴露时间延长,促进作用消失,抑制作用有所下滑,浸泡液对藻细胞生长具有抑制性而非致死性的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号