首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
2007年春节期间北京大气颗粒物中多环芳烃的污染特征   总被引:10,自引:3,他引:10  
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2 5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2 5夜间平均质量浓度为232 ug·m-3和132 ug·m-3,分别高于白天的PM10(194ug·m-3)和PM2.5(107ug·m-3);除夕后颗粒物日平均质量浓度为252.3 ug·m-3(PM10)和123.8ug·m-3 (PM2.5),分别高于除夕前的166.7 ug·m-3(PM10)和106.8 ug·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响.但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

2.
厦门城区大气颗粒物PM10中有机酸源谱特征分析   总被引:5,自引:5,他引:0       下载免费PDF全文
对厦门城区大气颗粒物PM10中有机酸的可能来源,如烹调油烟、生物质燃烧颗粒、汽车尾气和土壤/路面扬尘等4种不同排放源,采用再悬浮混合箱得到PM10样品.采用BF3/正丁醇衍生-GC/MS分析方法,测定了包括二元羧酸、脂肪酸和芳香酸共15种有机酸.结果表明,烹调油烟中有机酸的含量远高于其它颗粒物,最高可达53%,其中亚油酸和油酸的含量最高,为24%±14%;而汽车尾气颗粒物中乙二酸的含量最高,其次为邻苯二甲酸Ph;汽油燃烧颗粒物中己二酸与壬二酸的比值显著高于其它样品,可用于环境大气中二元羧酸的人为和生物来源的定性判断.除发电机排放样品外,其它样品中丙二酸与丁二酸的比值(0.07~0.44)远低于环境样品中该比值范围(0.61~3.93),表明丙二酸与丁二酸的比值可用于环境大气中二元羧酸的一次/二次来源的定性判断.  相似文献   

3.
北京城郊冬季一次大气重污染过程颗粒物的污染特征   总被引:17,自引:4,他引:13  
本研究分析了北京冬季一次大气重污染过程的颗粒物污染特征,通过数学统计方法分析了其形成的可能原因.观测于2013年1月24—31日进行,在西三环城区和大兴郊区使用中流量大气颗粒物采样器采集可吸入颗粒物(PM10)和细颗粒物(PM2.5),并采用离子色谱和元素碳/有机碳分析仪分析了PM2.5上的水溶性离子、元素碳和有机碳浓度.结果表明,本次重污染天气的大气日均能见度低于3.0 km.PM10和PM2.5质量浓度日均最大值分别为675.5和453.4μg·m-3,平均质量浓度为349.2和260.8μg·m-3,超过环境空气质量标准(GB3095—2012)所规定的二级浓度限值.通过比较PM2.5上化学成分的浓度发现,在城区和郊区,此次天气形成的共同污染源为冬季燃煤燃烧、汽车尾气排放和二次有机气溶胶污染;而土壤/沙尘对郊区污染天气的形成有部分贡献.大气中PM2.5质量浓度与能见度呈对数负相关关系.  相似文献   

4.
东海大气气溶胶中二元羧酸的分布特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
大气气溶胶中的二元羧酸因其在全球气候变化中的潜在作用而受到广泛关注.利用2011年5月12日-6月6日在东海采集的气溶胶样品,分析其中水溶性二元羧酸及常量离子浓度,探讨东海气溶胶中二元羧酸的时空分布特征及来源.结果显示东海大气气溶胶中乙二酸、丙二酸和丁二酸的浓度分别为26.0~1475.5 ng·m-3、0.1 ~61.4 ng·m-3和0.1~132.4 ng·m-3,乙二酸在这3种二元羧酸中的贡献最大,为88.3%.东海气溶胶中二元羧酸浓度的昼夜变化不显著.空间分布整体呈现近海高、远海低的趋势.气团的来源和迁移路径以及气象因素影响气溶胶中二元羧酸的分布,气团来自污染较重的陆源时气溶胶中二元羧酸的浓度较高,气团来自清洁的海洋源时,二元羧酸的浓度则较低;阴雾天气时气溶胶中二元羧酸浓度相对较高,降雨发生时二元羧酸的浓度较低.二元羧酸与常量离子的相关性分析表明,自然源和人为源释放的挥发性有机物质在液相中氧化生成二元羧酸是东海大气气溶胶中二元羧酸的主要源,而汽车尾气和生物质燃烧的一次排放、海洋源以及碱性粗颗粒吸收气体二元羧酸不是主要源.液相中乙醛酸氧化形成的乙二酸和长链二元羧酸氧化形成的乙二酸对东海气溶胶中乙二酸的贡献分别为41%和59%.  相似文献   

5.
西安市大气中二元羧酸有机气溶胶组成及来源   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究西安市冬季大气PM10中二元羧酸类有机气溶胶的组成和来源,采集了西安市2009年1~2月份的PM10样品,并利用GC/MS对样品中二元羧酸进行了化学表征.结果表明:西安市冬季大气中二元羧酸总浓度为(1597±725)ng/m3,其中草酸浓度最高[(1162±570)ng/m3],其次是邻苯二甲酸[(196±82)ng/m3]、丁二酸[(98±71)ng/m3]和丙二酸[(58±45)ng/m3].西安市二元羧酸浓度高于北京、南京、广州、香港等城市14%~350%,表明其污染严重,其中草酸相对含量远高于国内其他城市,显示西安市冬季大气气溶胶更为老化.C3/C4, C6/C9和Ph/C9比值及其相关性进一步表明二元羧酸主要来自光化学氧化.通过对水溶性有机碳(WSOC), 有机碳(OC), 元素碳(EC), 二次有机碳(SOC)的分析,发现WSOC主要来自于二次有机碳(SOC)的形成.另外,温度升高,相对湿度增加,导致春节后尽管燃煤排放污染物减少,但二元羧酸浓度并无降低,而相对含量较节前却显著增加.  相似文献   

6.
于2011年10月1日至10日在上海市城区对大气中细粒子的质量浓度和含碳气溶胶进行了在线连续观测,获得了秋季典型大气灰霾污染过程中含碳气溶胶的变化特征.观测结果显示,在大气灰霾过程中PM2.5中有机碳(OC)和元素碳(EC)的质量浓度分别为(20.38±7.11)μg·m-3和(4.07±1.97)μg·m-3,浓度显著高于非霾过程.以非霾天气的起始点作为参照点,得出灰霾期间OC和EC的增长率分别为641%±258%和409%±246%,本次灰霾过程中OC的污染累积与二次生成作用分别占63.8%和36.2%,污染过程以累积为主.灰霾期间OC/EC与O3具有良好的线性关系,且相关分析表明二者之间呈正相关,OC浓度的升高与含碳组分的光化学反应有关.采用EC示踪法估算短期大气过程中有机碳(SOC)含量,灰霾天气和非霾天气PM2.5中的SOC浓度分别为1.64~17.96 μg·m 3和0.25 ~2.83 μg·m-3,分别占OC的l0.7%~66.7%和9.2% ~52.5%.  相似文献   

7.
李丹  伦小秀  邸林栓  王璇 《环境科学研究》2021,34(11):2579-2587
大气细颗粒物中有机物含量占20%~80%,部分有机物除具有较强的毒性外,还具有较强吸湿性,影响大气环境质量.因此,为充分研究细颗粒物中一元羧酸的来源及其对大气环境的影响,于2020年在秦皇岛市区(海港区站点)和工业园区(昌黎站点)采集细颗粒物,经预处理的样品用三氟化硼-甲醇(BF3-CH3OH)衍生化试剂衍生后,采用气相色谱质谱联用(GC-MS)的方法对PM2.5中的一元羧酸进行测定,一共检测到17种一元羧酸(碳数分布在10~24之间).结果表明:①PM2.5浓度的季节性变化呈冬季>秋季>春季>夏季的特征,且工业园区(昌黎站点)PM2.5浓度为21.40~112.41 μg/m3,高于市区(海港区站点为9.01~104.88 μg/m3).②两个采样点一元羧酸浓度的季节性变化特征并不明显,海港区站点、昌黎站点一元羧酸的年均浓度分别为873.91、895.22 ng/m3.③两个站点碳数小于22的一元羧酸浓度均表现出明显的偶数碳优势,海港区站点、昌黎站点浓度最高的一元羧酸均为棕榈酸(C16),年均浓度分别为512.86、514.34 ng/m3;其次是硬脂酸(C18),年均浓度分别为270.06、268.17 ng/m3.两站点各季节C16和C18分别占一元羧酸总浓度的48.83%~66.40%和22.81%~36.96%.一元羧酸的碳优势指数(CPI)与植物贡献的一元羧酸(碳数≥ 22)总浓度呈负相关.④根据碳数分布规律、∑C ≥ 22/∑C < 22(碳数大于等于22的一元羧酸与碳数小于22的一元羧酸浓度的比值)、C18/C16(硬脂酸和棕榈酸浓度的比值)、CPI值以及C18:1/C18(油酸与硬脂酸浓度的比值)来初步判断一元羧酸的来源及其对大气环境的影响,发现秦皇岛市两个站点夏季大气氧化性最强(市区大气氧化性较工业园区强),春、秋两季大气氧化性较弱,尤其是工业园区春季大气氧化性最弱,其一元羧酸主要来自本地源;燃煤、机动车尾气排放、道路扬尘以及肉类烹饪是大气PM2.5中一元羧酸的主要来源;植物源对一元羧酸浓度的贡献较小.研究显示,秦皇岛市两个站点一元羧酸浓度的季节性变化并不显著,燃煤、机动车排放、道路扬尘及肉类烹饪对一元羧酸贡献较大.   相似文献   

8.
佛山灰霾期挥发性有机物的污染特征   总被引:9,自引:8,他引:1       下载免费PDF全文
2008年12月6~31日在佛山收集大气挥性有机物(VOCs),并进行定量分析.结果表明,灰霾期VOCs浓度较高,其中甲苯(68.93μg·m-3±37.78μg·m-3)最高,非灰霾期异戊烷(20.59μg·m-3±14.28μg·m-3)最高.灰霾期烷烃和炔烃日变化不明显,而烯烃和芳烃在中午有较大幅度降低,非灰霾天气日变化相对稳定.等效丙烯浓度灰霾期远高于非灰霾期,灰霾期等效丙烯浓度从高到低分别为甲苯、丙烯和乙烯,非灰霾期分别为丙烯、乙烯和1-丁烯,灰霾天气芳烃对等效丙烯浓度的贡献有明显增加.灰霾期苯浓度很高,对人体健康有较大的潜在危害.日变化规律和特征比值表明机动车尾气排放是灰霾期大多数VOCs(如异戊烷和乙炔)的主要来源,同时其它来源如溶剂挥发对VOCs苯和甲苯的贡献不容忽视.  相似文献   

9.
利用微脉冲激光雷达分析上海地区一次灰霾过程   总被引:20,自引:7,他引:13       下载免费PDF全文
通过分析2008年6月至2009年5月期间浦东新区灰霾天气出现的特征,并以2008年12月19日至2008年12月21日一次典型的灰霾天气过程为例,利用激光雷达(Light laser detection and ranging,简称Lidar)数据资料反演得到气溶胶消光系数及其强度图和廓线图,结合地面气象数据和气溶胶观测资料,分析了此次灰霾天气形成的原因.一年的观测资料表明,上海地区冬季和春季易产生灰霾天气,冬季出现重度霾最多,秋季和夏季灰霾天气较少.较弱的太阳辐射以及静风、小风是导致灰霾天气发生的重要原因,且高湿度的霾天气对能见度影响更大.大气边界层(以下简称边界层)高度变化决定着灰霾天气发生的强度,当边界层高度在1km左右时,易发生轻微霾天气,当边界层高度降至600m左右时,易发生中度、重度霾天气,而太阳辐射强度变化决定着边界层高度的变化.轻微霾天气下,大气气溶胶垂直分布最强消光值约为0.15km-1,而重霾天气下可达0.30km-1以上.本次霾过程还受地面颗粒物排放的影响,主要是PM1和PM2.5,且在消光作用中散射性气溶胶的贡献大于吸收性气溶胶.轻微霾天气下PM2.5浓度为50μg·m-3,黑碳浓度为5000ng·m-3,浊度为200Mm-1,而重度霾时则分别达到200μg·m-3、24000ng·m-3和1400Mm-1.随着此次霾的出现,整层大气气溶胶光学厚度(AOD,550nm)不断增加,在重度霾时达到0.6左右,Angstrom指数在重度霾时显著降低,表明有大颗粒物导入,说明此次重度霾天气的发生还与气溶胶的输送有关.  相似文献   

10.
有机物已成为我国城市大气颗粒物中最重要组成部分.为认知河北工业城市大气颗粒物中有机物浓度水平和来源,于2010年9月~2011年8月,利用安德森9级惯性撞击式颗粒物采样器在河北省保定市采集了大气颗粒物样品,采用有机溶剂萃取-气相色谱/质谱法定量分析了其中的正构烷烃.结果表明,采样期间保定市大气细粒子日均浓度67%超过GB 3095-2012二级标准75μg·m-3,约96%超过国家可吸入颗粒物浓度标准150μg·m-3.颗粒物中检测出C14~C32正构烷烃19种,浓度范围111.23~979.81 ng·m-3,日均浓度264.2 ng·m-3;4个季节的主峰碳各有不同,冬春季主峰碳为C20、C21和C22,夏季为C27;春、夏、秋、冬CPI值分别为0.97、1.24、0.92、0.86,平均值为1.01.冬春季正构烷烃主要受控于化石燃料燃烧和汽车尾气排放,夏秋季还同时受到高等植物角质蜡层的挥发影响,全年以人为源的影响为主.  相似文献   

11.
本文针对重庆主城区4个采样点PM2.5中羧酸开展研究,通过GC-MS分析,定量分析了16种饱和脂肪酸、21种不饱和脂肪酸和8种二元羧酸等多种物质的浓度水平,进而对羧酸的季节变化及来源进行了探讨.羧酸日均总浓度为130.42~1953.79 ng·m~(-3),一元脂肪酸和二元羧酸在各采样点浓度差异显著.一元脂肪酸呈明显的季节变化,夏季最高(961.97 ng·m~(-3)),冬季最低(49.24 ng·m~(-3)).饱和脂肪酸中偶数碳优势明显,以C_(16)(棕榈酸)和C_(18)(硬脂酸)最为丰富.二元羧酸也呈明显的季节变化,在冬季最高(432.04 ng·m~(-3)),春季最低(64.57 ng·m~(-3)).二元羧酸以丙二酸、丁二酸和戊二酸为主.细菌活动和烹饪油烟对一元脂肪酸具有较大的贡献,光化学氧化作用则对二元羧酸贡献较大.  相似文献   

12.
石家庄地区芳香族化合物的污染特征及来源分析   总被引:1,自引:1,他引:0       下载免费PDF全文
杨阳  李杏茹  刘水桥  杨玉磊  赵清  陈曦  徐静 《环境科学》2019,40(11):4841-4846
为了解石家庄地区芳香族化合物的污染特征,于2016年9月18日至10月17日进行为期30 d的PM_(2.5)样品昼夜采集,使用气相色谱-质谱联用仪(GC-MS)进行定性定量分析.结果表明,芳香族化合物的总平均浓度为33. 5 ng·m~(-3),明显低于左旋葡聚糖(487 ng·m~(-3)).其中硝基酚类化合物浓度最高(20. 4 ng·m~(-3)),芳香酸类次之(9. 94 ng·m~(-3)),芳香醛类最低(3. 14ng·m~(-3)).受边界层高度、温度降低的影响,8种化合物夜间浓度明显高于日间.硝基酚类、芳香醛类和芳香酸类化合物与左旋葡聚糖呈显著的正相关关系,相关性系数(r)分别为0. 682 9、0. 644 3和0. 678 2,表明生物质燃烧是芳香族化合物的重要一次来源,直接影响其在大气中的浓度水平.结合芳香族化合物总浓度的日变化趋势和后向轨迹模型对其来源进行分析,发现秋季石家庄地区芳香族化合物的污染程度受区域传输和本地排放的综合影响.  相似文献   

13.
2010年冬、夏两季,利用大流量采样器和气相色谱-质谱联用仪(GC-MSD),分析了福州市大气中多环芳烃(PAHs)的浓度水平、分布特征及来源.结果表明,福州城郊冬、夏两季大气(颗粒相+气相)中ΣPAHs浓度范围分别为115.45~187.76ng.m-3和45.55~59.20 ng.m-3,整体而言,气相显著高于颗粒相,冬季高于夏季;冬季城区高于郊区,夏季城区则低于郊区,但城郊区差异不显著;气相中PAHs比例夏季高于冬季.整体而言,气相中PAHs主要以2~4环化合物组成,颗粒相中则以4~6环化合物为主.冬季气相中PAHs主要以3环化合物为主,夏季主要以3环和4环化合物为主;颗粒相中PAHs组成无明显的季节特征.毒性当量因子法分析表明福州市空气质量状况总体良好.来源解析表明,福州大气PAHs主要为燃烧源,福州机动车燃料以柴油为主.  相似文献   

14.
The chemical characteristics (water-soluble ions and carbonaceous species) of PM2:5 in Guangzhou were measured during a typical haze episode. Most of the chemical species in PM2:5 showed significant di erence between normal and haze days. The highest contributors to PM2:5 were organic carbon (OC), nitrate, and sulfate in haze days and were OC, sulfate, and elemental carbon (EC) in normal days. The concentrations of secondary species such as, NO3??, SO4 2??, and NH4 + in haze days were 6.5, 3.9, and 5.3 times higher than those in normal days, respectively, while primary species (EC, Ca2+, K+) show similar increase from normal to haze days by a factor about 2.2–2.4. OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC (secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days. The significantly increase in the secondary species (SOC, NO3??, SO4 2??, and NH4 +), especially in NO3??, caused the worst air quality in this region. Simultaneously, the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions. During the sampling periods, air pollution and visibility had a good relationship with the air mass transport distance; the shorter air masses transport distance, the worse air quality and visibility in Guangzhou, indicating the strong domination of local sources contributing to haze formation. High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.  相似文献   

15.
北京PM2.5中有机酸的污染特征及来源   总被引:5,自引:1,他引:4       下载免费PDF全文
采用GC/MS定量分析了2003年9月至2004年7月期间北京市PM2.5中33种脂肪酸(C10~C32)和10种二元酸(diC2~diC11)的含量.研究表明,脂肪酸具有明显的偶数碳优势,4个季节中最丰富的脂肪酸物种都是棕榈酸和硬脂酸(C16、C18).脂肪酸总浓度年均值为493.89ng·m-3,变化范围1.68~2961.70 ng·m-3,季节变化特征不明显.二元酸以草酸(diC2)、丙二酸(diC3)为主,浓度年均值分别为548.13ng·m-3、530.1 ng·m-3;二元酸总浓度呈明显季节变化特征,夏季最高(1539.36 ng·m-3),冬季最低(908.12 ng·m-3).4个季节碳优先指数(CPI)无显著差别,分别是15.3(秋)、12.4(冬)、11.5(春)和13.4(夏);CPI值与植物蜡贡献脂肪酸值呈现出一定的负相关.主成分分析结果表明,油烟、高等植物排放和细菌活动是脂肪酸的主要污染源,二次化学反应转化是二元酸的主要来源.  相似文献   

16.
河北农居环境颗粒态汞污染特征及健康评估研究   总被引:2,自引:1,他引:1       下载免费PDF全文
赵亚娟  龚巍巍  栾胜基 《环境科学》2012,33(9):2960-2966
近年来,我国农村环境问题日渐加重,大气颗粒态汞对人体健康的危害逐渐凸现出来,而已有研究对我国农居环境中的汞污染状况关注较少. 以颗粒态汞为研究对象,于2009年7、8月及2010年10~12月,对河北省6个村庄中的34个典型农居环境进行PM10和PM2.5膜采样,采用冷原子荧光法测定颗粒态汞质量浓度. 结果表明,同一季节时,厨房PM10中汞质量浓度约是庭院PM10中汞质量浓度的2倍; 在同一空间内,PM10中汞质量浓度大小依次是冬季(3.004 ng·m-3)>秋季(1.550 ng·m-3)>夏季(1.127 ng·m-3); 同一季节时,PM2.5中汞质量浓度大小依次是厨房(0.795 ng·m-3±0.337 ng·m-3)>客厅(0.398 ng·m-3±0.159 ng·m-3)>庭院(0.321 ng·m-3±0.143 ng·m-3); PM2.5中的汞质量浓度占PM10中汞质量浓度的百分比为(52.4±13.5)%. 对农居环境PM2.5中汞的健康风险度水平进行评价,不同人群中儿童的暴露水平最高,其年均超额危险度<10-8. 可知农居环境PM2.5中汞对农户的健康风险在可以忽略的水平.  相似文献   

17.
通过对广州某商住区大气中二噁英的季节性监测,结合后向轨迹的计算,对大气中PCDD/Fs的浓度及其长距离迁移来源进行分析.结果表明:大气中二噁英浓度有季节性变化特点,其趋势为冬季(14.4 pg·m-3)>秋季(10.0 pg·m-3)>春季(5.54 pg·m-3)>夏季(3.88 pg·m-3).同时,大气中PCDD/Fs单体特征也具有季节性特点,秋冬季节七氯代、八氯代PCDD/Fs百分比高于春秋两季,春夏两季低氯代单体百分比含量高于秋冬两季.追溯采样期间该城市大气的后向轨迹,发现秋冬两季到达广州的气团主要经过湖南、湖北和江西等北方或东北方的内陆省份,而春夏两季到达广州的气团主要经过我国东海和南海海域上空.而这种变化很可能是造成广州大气中二噁英浓度季节性变化的主要原因.  相似文献   

18.
采集了厦门市冬春季(2008-12-04~2009-03-20)湖里工业区和大嶝岛旅游区大气PM10样品,用GC-MS定量了PM10负载的19种多环芳烃(PAHs),并结合采样期间气象资料对灰霾期和非灰霾期多环芳烃的差异特征进行对比分析.结果表明,冬春季采样期内,厦门市大气PM10中PAHs的浓度变化范围为12.93~79.27 ng.m-3,平均42.28 ng.m-3,比2004年冬季增长近3倍.灰霾期间PM10中PAHs总的质量浓度明显高于非灰霾期,并且灰霾期间低分子量组分菲、荧蒽和芘的质量分数显著下降,高分子量组分苯并[b]荧蒽、苯并[k]荧、苯并[a]芘、苝、茚并[1,2,3-cd]芘、苯并[ghi]苝和晕苯的质量分数相对升高.采用特征化合物比值、主成分分析与多元线性回归对来源与贡献率进行了分析和估算.灰霾期间识别出3类污染源:机动车尾气排放+天然气燃烧、煤燃烧和焦炉排放,其贡献率分别为62.7%、28.1%和9.2%;非灰霾期间同样识别出这3类污染源,其贡献率分别为48.6%、36.9%和14.5%.表明厦门市冬春季灰霾期间PM10中PAHs受本地源排放影响相对较多,非灰霾期间受北方燃煤长距离传输影响更显著.  相似文献   

19.
鼎湖山大气气态总汞含量和变化特征的初步研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用高时间分辨率自动大气测汞仪(Tekran,2537B),于2009.10—2010.4对珠三角背景点鼎湖山大气气态总汞(TGM)进行了连续7个月的野外观测.结果表明,鼎湖山地区TGM的年均含量为(5.54±2.89)ng·m-3,含量明显高于全球大气汞含量的背景值(1.5~2.0ng·m-3)和国内部分地区的背景值,表明该地区大气受到了一定程度的汞污染.监测期间,4月TGM含量最高,11月最低.日变化特征显示白天TGM浓度比晚上高,属典型白天控制型.鼎湖山地区TGM主要受珠三角的区域污染影响,TGM含量变化与大气中NO2、SO2的相关性分析和与用电需求变化对比表明,珠三角人为源(尤其是燃煤的汞排放)对鼎湖山大气TGM有较大的贡献.  相似文献   

20.
南京地区典型霾天气个例特征的比较分析   总被引:4,自引:0,他引:4  
利用2011年南京大学城市大气环境观测站气象因子及污染物浓度资料、58238站点气象探空资料及NCEP再分析资料、CALIPSO卫星资料,比较分析了南京地区4类典型霾天气(烟花爆竹、沙尘、秸秆燃烧及不利气象条件污染)的污染特征.结果表明:烟花爆竹个例污染物排放集中,以细颗粒物为主,除夕和初五的PM2.5小时浓度分别达到0.46 mg·m-3和0.34 mg·m-3,受逆温层影响,能见度持续降低,最低达到1.16 km;受北方沙尘暴南下影响,沙尘个例以粗颗粒为主要污染物,PM10小时最高浓度为0.78 mg·m-3,PM2.5/PM10平均值为0.39,粒子形状不规则,体积偏退比为0.17;秸秆燃烧个例为重霾污染,能见度最低值为0.97 km,后向散射系数为0.0039 km-1獉sr-1,PM10和PM2.5最高小时浓度达到0.80 mg·m-3和0.49 mg·m-3,颗粒物主要来自南京东南地区秸秆的集中燃烧;不利气象条件导致的污染过程在冬季比较常见,下沉气流活跃,出现双层逆温,近地面静小风造成污染物积累,PM2.5与能见度的相关系数达到0.86,细颗粒物为主要污染物.可见,南京市霾天气可分为两类,分别是由不利气象条件导致的累积性污染和由高强度排放源造成的暴发性污染,具有不同的气象和污染特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号