首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 187 毫秒

1.  粒状铁与甲醇支持的生物-化学联用法去除富氧地下水中硝酸盐  
   黄国鑫  H.FALLOWFIELD  H.GUAN  刘菲《生态环境》,2012年第21卷第4期
   针对富氧地下水中硝酸盐,采用粒状铁和甲醇支持的生物-化学联用法开展了批实验研究,优化了脱氮反应参数,初步探讨了脱氧脱氮的能力及途径。结果表明,该法的优化参数是粒状铁种类为GI-北京,m(粒状铁)∶m(水)为3∶800,粒状铁粒径为0.425~1.0 mm,反应时间为5 d,甲醇用量为210.59 mg.L-1。生物-化学法、粒状铁和好氧异养菌完全脱氧所需的时间分别是174、206和2 746 min。生物-化学法脱氧依赖于粒状铁化学还原和好氧异养菌有氧呼吸,并且前者起着关键作用。随着反应时间的增加,异养脱氮、自养脱氮和化学还原各自引起的NO3-去除率亦增加。当反应时间≤5 d时,自养脱氮和化学还原的去除率均〈10%,而当反应时间为5 d时,生物-化学法的NO3-去除率达到近100%。生物-化学法内存在异养脱氮、自养脱氮和化学还原3种脱氮途径,其中异养脱氮是最主要的途径,且三者存在共生、协同和促进作用。生物-化学法脱氮期间硝酸盐还原速率≥亚硝酸盐还原速率。生物-化学法去除地下水中硝酸盐是有效可行的。    

2.  木屑-硫磺填充床反硝化生物滤池强化硝酸盐去除  
   董全宇  陈帆  程浩  姚晓婧  王爱杰《环境工程学报》,2018年第10期
   针对污水处理厂二级出水深度脱氮的需求,设计了以木屑与硫磺颗粒为填料(质量比1:1)的反硝化生物滤池,对碳氮比失衡的污水处理厂二级出水进行深度脱氮处理。结果表明,木屑释放碳源速率在10 d之后趋于稳定,COD中(40.6±10.0)%是反硝化菌可直接利用的VFA。反硝化生物滤池运行的最佳HRT为10 h,在此条件下,进水硝酸盐(以N计)浓度为30 mg·L~(-1)时,出水硝酸盐浓度最低为11.5 mg·L~(-1),亚硝酸盐(以N计)浓度最低为1.4 mg·L~(-1),反硝化生物滤池内未发生硝酸盐异化还原(DNRA)作用,出水无氨氮积累。出水SO42-浓度最高为73.8 mg·L~(-1)。反硝化生物滤池运行稳定后,出水中COD未超过30 mg·L~(-1),木屑释放的碳源与异养反硝化过程消耗的碳源持平,经反硝化生物滤池深度处理的出水中无过量残留有机物。出水pH稳定在6.9~7.4范围内,反硝化生物滤池无需外加碱类物质。    

3.  强化厌氧污泥体系同步脱硫反硝化特性研究  被引次数:2
   徐金兰  侯圣春  黄廷林《环境科学》,2010年第31卷第5期
   以硫化物为电子给体的自养反硝化厌氧体系是代替传统异养反硝化工艺处理低C/N比含氮废水的有效工艺,可以同时去除硫化物和硝酸盐.将脱氮硫杆菌菌悬液接种到厌氧污泥体系中,脱氮硫杆菌快速富集,采用5组进水比N/S比不同的反应瓶进行试验,运行15d后,测定不同时段的出水硫化物、硝酸盐、亚硝酸盐、硫酸盐浓度等指标,考察强化厌氧污泥体系去除硫化物和硝酸盐的特性,并对生化反应机制进行初步研究.结果表明,强化厌氧污泥体系运行3h后,进水中90%的硫化物被去除,硫化物的去除与进水N/S比无关,硫化物(以S计)去除速率高达20~24g·(m3·h)-1,是相关文献报道的10倍左右;运行6h后,进水中65%的硝氮被去除,硝氮的去除负荷随着进水N/S比的提高而增大,最高达到940g·(m3·h)-1,约为硫自养反硝化体系硝氮去除负荷的2倍,此时体系中亚硝氮积累,最高浓度达到93mg·L-1,进水N/S比低的条件下,6h后亚硝氮消失,进水N/S比较高时,21h后出水中未检测到亚硝氮.表明强化厌氧污泥体系停留6h后可以实现同时去除硫化物和硝酸盐,但硝酸盐首先转化为亚硝氮.与以往不同的是研究发现硫化物与生物硫粒产生多硫化合物的链式反应,是硫化物迅速转化的主要途径,此外,还原硝氮的电子给体并不来源于硫化物,可能主要来源于体系中产生的单质硫.    

4.  饮用水反硝化脱氮方法研究  被引次数:2
   罗启芳  谭佑铭  王琳  曾欣《安全与环境学报》,2003年第3卷第2期
   为去除饮用水中的硝酸盐氮(NO3ˉ-N),采用上流式厌氧污泥床(UASB)反应器和固定化微生物进行异养反硝化;自制固定化反硝化菌涂层电极和生物电化学脱氮装置,并用于自养反硝化。试验结果表明。若以甲醇为碳源。当碳氮比(C/N)≥1.o时,室温下经UASB处理4h,NO3ˉ-N去除率为97.7%;若以乙酸为碳源。当C/N≥1.0时,30C下经固定化微生物处理6h,N03ˉ-N去除率为98.6%;在无外加碳源的条件下处理东湖现场水样,30C下经60h后。N03ˉ-N去除率达93.5%。生物电化学脱氮装置可迅速建立自养反硝化菌所需的厌氧环境,水样在室温下经72h处理,脱氮率达96.3%。    

5.  电极生物膜自养脱氮系统中的电化学作用  
   杨琳  方芳  兰国新  刘贵强《环境化学》,2014年第6期
   设计构建三维电极生物膜反应器,成功启动后稳定运行,在全自养条件下能较好地处理低碳氮比含氮废水.结果表明,在进水不含有机碳源,电流强度为30 mA,电流密度为0.012 mA·cm-2,运行周期24 h的实验条件下,反应器处理进水氨氮浓度为30 mg·L-1的废水时,氨氮转化率达到了90.3%,总氮去除率为70.0%;处理进水硝态氮浓度为30 mg·L-1的废水时,硝态氮去除率达到了82.7%.在考察电极生物膜反应器脱氮性能的同时,探讨系统中纯电化学作用的脱氮能力.结果显示电极生物膜处理氨氮废水的系统中,纯电化学脱氮作用为系统总脱氮能力的10%左右;而处理硝态氮废水的电极生物膜系统中,无电化学还原去除NO-3-N作用.    

6.  固定床-微电解反硝化去除饮用水中的硝酸盐氮  被引次数:10
   曲久辉  范彬  刘锁祥《环境科学》,2002年第23卷第6期
   研究了一种电化学与生物膜集成的固定床-微电解反应器采用活性炭作为固定床填料,石墨板为阳极,碳纤维为阴极,通过电化学过程产氢作为反硝化的电子供体,在反应器内创造一种还原性条件,对含有硝酸盐氮的饮用水进行反硝化脱除.结果表明,在进水流量为40mL/h、硝酸盐氮浓度为40mg/L、电流强度达到14mA时,所研究的反应器对水中的硝酸盐氮可以100%去除,水中未检出亚硝酸盐氮.由于反硝化过程不加外加任何有机物,也不产生任何二次污染物,该除氮方法具有安全性.    

7.  三相生物流化床处理低C/N污水的亚硝化过程控制研究  
   《环境工程》,2015年第33卷第1期
   将短程硝化与生物流化床相结合,采用低碳氮比的人工合成污水进行启动,考察进水COD、氨氮、DO、pH对硝化和亚硝化过程的影响.研究表明,较短的水力停留时间(HRT)和较少的接种污泥量有利于生物膜的生长,能够成功实现生物流化床的快速启动.高进水氨氮浓度有助于反应器实现亚硝酸盐的积累,但是这种积累并不稳定.当反应器中pH为7.5~8.1,p(DO)为1.5~2.5 mg/L时,最大亚硝化率达到75%左右,氨氮去除率达85%以上.出水NO2--N和NO3--N浓度随进水COD浓度的增加而减少;当进水COD浓度为50 mg/L时,出水硝酸盐浓度急剧减少,亚硝酸盐浓度有所降低,反应器发生同步硝化反硝化脱氮现象.    

8.  厌氧膜生物反应器出水生物脱氮技术研究  
   傅炜程  孙亚东  吴志超  王志伟《环境科学研究》,2019年第32卷第5期
   为解决AnMBR(厌氧膜生物反应器)出水NH_4~+脱除的问题,提出利用AnMBR出水中残余CODCr、溶解性CH4以及低价态硫元素,通过构建缺氧滤池和好氧滤池进行生物异养和硫自养脱氮的方法,进一步削减AnMBR出水CODCr、去除溶解性CH4、同时同步生物脱氮.结果表明:①缺氧滤池与好氧滤池经过120 d单独驯化与33 d串联驯化后,在HRT(hydraulic retention time,水力停留时间)为6 h、进水为实际AnMBR出水的工况条件下,出水ρ(TN)为17. 93 mg/L,去除率为52. 7%;出水ρ(NH_4~+-N)为2. 78 mg/L,去除率为92. 3%,达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级B标准.在HRT为8 h工况条件下,出水ρ(TN)为14. 60 mg/L,去除率为59. 0%;出水ρ(NH_4~+-N)为2. 22 mg/L,去除率为93. 7%,达到GB 18918—2002一级A标准.②脱氮滤池中氮脱除路径主要包括残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化,并通过物料衡算评价了三者对于氮脱除的贡献,在HRT为6 h的工况条件下,脱氮滤池脱氮过程中残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化三者占比分别为54. 1%、24. 3%和21. 5%;在HRT为8 h的工况条件下,脱氮滤池脱氮过程中3种途径占比分别为70. 4%、13. 8%和15. 8%.研究显示,脱氮滤池可以实现对AnMBR出水的低耗生物脱氮以及整体水质的达标排放.    

9.  序批式膜生物反应器中反硝化聚磷菌的富集  被引次数:6
   代文臣  张捍民  肖景霓  杨凤林  张兴文  张新宇《环境科学》,2007年第28卷第3期
   采用序批式膜生物反应器(SBMBR)对以硝酸盐作为电子受体的反硝化聚磷菌的富集进行了研究.结果表明,经过厌氧-好氧和厌氧-缺氧-好氧2个阶段的富集,反硝化聚磷菌占全部聚磷菌的比例从19.4%上升到69.6%,每周期缺氧段投加硝酸盐氮120 mg时,SBMBR系统运行最为稳定.稳定运行的SBMBR反硝化强化除磷体系具有良好的强化除磷和反硝化脱氮性能,缺氧段脱氮和除磷效率分别达到100%和84%,膜出水总磷浓度平均低于0.5mg/L,系统除磷率达到96.1%.此外,氨氮去除率保持在92.2%,氨氮被去除的同时并没有发现亚硝酸盐氮和硝酸盐氮的明显积累.    

10.  生物膜与A/O工艺耦合快速降解氨氮  
   吴晟旻 范伟平 沈珈琦 王晋宇《环境污染治理技术与设备》,2006年第7卷第4期
   应用由城市污水处理厂序批式间歇反应器(SBR)中筛选得到的4株特殊氨氧化菌,分别在SBR和有回流的生物膜与A/O工艺耦合体系培养中,考察其降解低碳高氨氮废水的功能。结果表明,自养硝化与异养氨氧化菌的混合菌群较单一自养硝化菌株降解氨氮速率快;在生物膜与A/O工艺耦合系统中,自养硝化与异养氨氧化菌协同代谢加速氨氮氧化脱除,氨氮脱除速率远比SBR系统快。对生物膜与A/O工艺耦合系统中氨氮脱除动力学进行了研究,模拟了NH4^+、NO2^-;质量浓度与氨氮脱除比速率之间的关系,模型得到了较好的验证。    

11.  生物膜与A/O工艺耦合快速降解氨氮  
   吴晟旻  范伟平  沈珈琦  王晋宇《环境工程学报》,2006年第7卷第4期
   应用由城市污水处理厂序批式间歇反应器(SBR)中筛选得到的4株特殊氨氧化菌,分别在SBR和有回流的生物膜与A/O工艺耦合体系培养中,考察其降解低碳高氨氮废水的功能.结果表明,自养硝化与异养氨氧化菌的混合菌群较单一自养硝化菌株降解氨氮速率快;在生物膜与A/O工艺耦合系统中,自养硝化与异养氨氧化菌协同代谢加速氨氮氧化脱除,氨氮脱除速率远比SBR系统快.对生物膜与A/O工艺耦合系统中氨氮脱除动力学进行了研究,模拟了NH4 、NO2-质量浓度与氨氮脱除比速率之间的关系,模型得到了较好的验证.    

12.  缺氧附着生长反应器同步脱氮除硫除碳运行效果探讨  
   李巍  赵庆良  刘颢《环境科学》,2008年第29卷第7期
   在缺氧环境下,应用附着生长反应器,通过降低水力停留时间增加进水底物负荷,对废水中硫化物、硝酸盐、亚硝酸盐和有机物等污染物质的降解情况进行了研究.结果表明,进水硫化物、硝酸盐氮、亚硝酸盐氮和有机物浓度分别为200、52.5、20和20 mg/L,去除率分别达到99%、99%、95.5%和80%,实现了兼养脱硫反硝化氮、硫、碳的同步去除.随着底物负荷的增大,硝酸盐和亚硝酸盐对冲击负荷的适应性逐渐变小;硝酸盐降解对进水负荷冲击的适应性强于亚硝酸盐;与增加进水负荷对反应器带来的冲击相比,缺氧环境的破坏对硝酸盐和亚硝酸盐的降解影响大;去除硫化物的60%被生物氧化为单质硫;缺氧反应器中发生了自养反硝化和异养反硝化作用,自养反硝化占主导地位,异养反硝化的发生力度为21.76%.    

13.  缺氧附着生长反应器同步脱氮除硫除碳运行效果探讨  被引次数:1
   李巍  赵庆良  刘颢《环境科学》,2008年第29卷第7期
   在缺氧环境下,应用附着生长反应器,通过降低水力停留时间增加进水底物负荷,对废水中硫化物,硝酸盐、亚硝酸盐和有机物等污染物质的降解情况进行了研究.结果表明,进水硫化物、硝酸盐氮、亚硝酸盐氮和有机物浓度分别为200、52.5、20和20mg/L,去除率分别达到99%、99%、95.5%和80%,实现了兼养脱硫反硝化氮、硫、碳的同步去除.随着底物负荷的增大,硝酸盐和亚硝酸盐对冲击负荷的适应性逐渐变小;硝酸盐降解对进水负荷冲击的适应性强于亚硝酸盐;与增加进水负荷对反应器带来的冲击相比,缺氧环境的破坏对硝酸盐和亚硝酸盐的降解影响大;去除硫化物的60%被生物氧化为单质硫;缺氧反应器中发生了自养反硝化和异养反硝化作用,自养反硝化占主导地位,异养反硝化的发生力度为21.76%.    

14.  矿物载体锯末碳源低温生物修复硝酸盐污染地下水  
   闫素云  匡颖  张焕祯《环境工程学报》,2012年第6卷第11期
   研究了低温条件下,沸石和火山岩为载体,锯末为碳源的生物反应器对地下水中硝酸盐氮的去除效果。结果表明,在(14±1)℃,水力停留时间18 h,进水硝酸盐氮浓度为27 mg/L的条件下,以锯末为碳源能有效去除地下水中的硝酸盐,沸石为载体时对硝酸盐氮的平均去除率为98%;火山岩为载体时对硝酸盐氮的平均去除率为95%。实验过程中出现铵盐和亚硝酸盐的积累,出水中氨氮浓度为1~2.55 mg/L,亚硝酸氮浓度为0~0.98 mg/L。出水pH均介于7~8,满足饮用水标准中pH的要求(6.5~8.5)。    

15.  3DBER-S反硝化脱氮性能及其菌群特征  被引次数:2
   王建超  郝瑞霞  孟成成  任晓克《环境科学研究》,2015年第28卷第2期
   针对污水处理厂尾水TN去除问题,采用16S r DNA克隆文库法,探究了3DBER-S(三维电极生物膜耦合硫自养脱氮工艺)的强化脱氮机制及其菌群特征.结果表明,I(电流)和HRT(水力停留时间)对3DEBR-S中氢自养和硫自养反硝化作用所占比例的影响较大,但对脱氮效率影响不显著.当进水C/N〔ρ(CODCr)/ρ(TN)〕为1、ρ(NO3--N)为35 mg/L、I为300 m A、HRT为4 h时,NO3--N和TN去除率可分别稳定在80%和74%以上.16S r DNA克隆文库结果显示,反应器中β变形菌纲为优势菌群,占47.89%〔以OUT(操作单元)计〕.在β变形菌纲中,与具有反硝化功能的陶厄氏菌属(Thauera)相似的细菌所占比例最大,为52.94%;与可分别利用硫和氢为电子供体进行反硝化脱氮的硫杆菌属(Thiobacillus)和食酸菌属(Acidovorax)相似的细菌分别占17.65%和14.71%.3DBER-S中存在异养联合氢自养和硫自养反硝化协同去除硝酸盐氮的作用,可为反硝化脱氮提供充足的电子供体,节约了有机碳源消耗,并保证了稳定高效的脱氮效果.    

16.  厌氧酸化-缺氧-好氧生物膜法处理焦化废水的研究  被引次数:15
   李咏梅  顾国维  赵建夫《上海环境科学》,2000年第Z1期
   用厌氧酸化-缺氧-好氧(A1-A2-O)生物膜法对上海焦化厂废水进行处理.试验结果表明,当进水COD为600~1000mg/L,@氨氮为200~280mg/L时,为同时达到较好的有机物去除和脱氮效果,系统的HRT至少应为34.5h;混合液回流比为4.0~5.0;好氧段pH值应维持在7.8~8.0,出水剩余碱度100~200mg/L;在缺氧段中需加入甲醇作为外加碳源,甲醇与硝酸氮的比为2.581为宜.在上述工艺条件下,系统中无亚硝酸氮的积累.    

17.  生物膜反应器-单宁酸铁处理低C/N废水的脱氮性能  
   《中国环境科学》,2019年第5期
   采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m~3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.    

18.  琼脂碳源生物反硝化去除水源水中硝酸盐  被引次数:1
   陈翔  梅翔  张萍  陈林  周富强  马跃进《环境工程学报》,2010年第4卷第11期
   针对受硝酸盐污染的水源水,以琼脂为反硝化细菌的碳源和微生物载体,通过生物反硝化作用脱除水源水中的硝酸盐,并利用曝气生物滤池(BAF)去除琼脂反应器出水中残留的少量CODMn和NO-2-N等污染物。实验结果表明,水源水自然接种的条件下,可以顺利启动琼脂反应器;在温度为25℃左右,琼脂反应器在进水NO-3-N约25 mg/L、水力停留时间1.5 h时,能获得70%的硝酸盐氮去除率;曝气生物滤池在水力停留时间0.5 h、气水比2.8时,可控制最终出水的CODMn和NO-2-N分别在5.0 mg/L和0.10 mg/L以下;琼脂反应器的脱氮效果与温度、进水NO-3-N浓度及水力停留时间等有关。研究指出,琼脂反应器与曝气生物滤池构成的组合系统能较好地脱除水源水中的硝酸盐并且能控制最终出水水质,不会导致二次污染,从而获得合格的饮用水源水。    

19.  活性碳纤维电极-生物膜反应器对废水的强化脱氮性能  
   杨群  杨昌柱  濮文虹《化工环保》,2012年第32卷第1期
   利用自制的活性碳纤维电极-生物膜反应器对低碳氮比(碳元素与氮元素的质量比)废水进行了脱氮实验.实验结果表明:当进水COD和碳氮比较低时,碳氮比和电流密度均对反应器的脱氮性能有很大影响;当碳氮比小于3.0时,出水的ρ(NO3--N)随进水碳氮比的增大而减小;当进水COD为70 mg/L,ρ( NO3--N)为35 mg/L、碳氮比为2.0、电流密度为0.025 mA/cm2、反应时间为8h时,出水的ρ(NO3--N)达到最低值11.2 mg/L,NO3--N去除率为68.0%.在适宜的碳氮比条件下,电极-生物膜反应器具有显著的强化脱氮作用,其对NO3--N的去除率与单纯生物膜反应器相比可提高6.0~15.0个百分点.保持碳氮比不变,提高进水COD会导致所需电流密度的提高和脱氮能力的下降.    

20.  铜锌阴极与BDD阳极电化学脱氮  
   夏远芬  叶忠香  杨光俊  刘丹丹《环境科学与管理》,2013年第38卷第4期
   将铜锌合金电极(Cu∶Zn =2∶1)作为阴极,钛基掺硼金刚石电极(BDD)作为阳极,用活性炭颗粒作为填料,利用间歇式三维电化学反应器脱除水中的硝酸盐氮.研究pH,电流密度,反应器运行方式,初始硝酸盐浓度对硝酸盐氮去除效果的影响.结果显示在pH值为6.8,初始硝酸盐浓度为100 mg·L-1,电流密度为2.0mA·cm-2的条件下,反应5h后,硝酸盐氮的去除率可以达到45.5%,副产物亚硝酸盐和氨氮接近零.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号