首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
N原子杂化石墨烯高效活化过一硫酸盐降解RBk5染料废水   总被引:6,自引:4,他引:2  
过硫酸盐高级氧化技术使用过程中,活化剂的大量流失与其环境二次危害是影响该技术应用的主要限制因素.针对这一问题本研究采用改进的Hummers法结合水热法制备环境友好型的N原子掺杂石墨烯作为催化剂,活化过一硫酸盐(PMS)产生硫酸根自由基(SO4-·)和羟基自由基(·OH)降解活性黑5(RBk5)染料.利用傅立叶红外光谱,X-射线光电子能谱,拉曼光谱和透射电子显微镜对N原子掺杂石墨烯进行表征.对催化剂催化性能进行研究,考察了初始p H、催化剂投加量和PMS投加量等因素对降解过程的影响.结果表明,N元素掺杂能够有效提升石墨烯材料的PMS催化活性,且活性受N掺杂比例影响较大;废水的初始p H对降解效率无明显影响.催化剂投加量为1. 5 g·L-1,PMS投加量为0. 3 g·L-1的条件下,反应25min后RBk5染料废水的降解率可达到99%以上,反应过程符合一级反应动力学.自由基猝灭实验显示,N掺杂石墨烯/PMS体系降解RBk5为表面反应,SO4-·和·OH为降解RBk5的主要自由基.循环实验证明催化剂稳定性能良好.  相似文献   

2.
该研究利用氢氧化钾和枯木一步法合成具有高活性的生物炭。由于氢氧化钾的加入,生物炭表面具有丰富的孔结构,促进了双酚A在其表面的吸附。利用该多孔生物炭活化过一硫酸盐(PMS)降解水中的双酚A(BPA)。其中性能最佳的生物炭样品由于出色的吸附和活化PMS性能,在1 h内,可将初始浓度为20 mg/L的BPA完全降解。条件实验证实该生物炭在酸性和中性环境中具有较高的催化活性;反应过程中主要依赖的活性自由基为·OH和SO_4·~-。除此之外,生物炭还具有较高的催化稳定性,再生之后催化活性无明显降低。  相似文献   

3.
采用椰壳、玉米芯和稻壳作为前驱体制备出3种生物炭,并将其用于活化过一硫酸盐(PMS)降解水中的四环素.结果表明,玉米芯生物炭(CC-BC)的催化活性最高,反应120 min,四环素的去除率高达71.2%.根据生物炭的表征结果可知,CC-BC优异的催化性能归因于其巨大的比表面积和较高的表面缺陷度.同时,对PMS用量、催化剂用量、溶液pH、反应温度和水质等影响四环素降解的因素进行了研究.自由基猝灭试验和电子顺磁共振测试(EPR)的结果表明,四环素的降解包括自由基和非自由基两种路径,CC-BC/PMS反应体系中产生了SO4·-、·OH、O2·-1O2活性物种.最后,重复使用性试验证明CC-BC具有良好的稳定性.  相似文献   

4.
高级氧化技术是一种以产生羟基自由基(·OH)和硫酸根自由基(SO4?·)来降解环境有机污染物的技术. 近年来,通过活化过一硫酸盐(peroxymonosulfate, PMS)而产生SO4?·的高级氧化技术受到了广泛关注. 与基于·OH的传统高级氧化技术相比,基于SO4?·的高级氧化技术具有氧化还原电位高、半衰期长、适用pH范围广和对污染物反应快速等优点. 本文从活化PMS方法的特点和性质出发,对目前活化PMS技术降解环境有机污染物的主要方法和活化机理进行了论述,活化方法包括过渡金属活化(均相和非均相)、碳质材料活化、碱性活化、热活化、辐射活化、电解活化等,活化PMS的机制是通过活化方法使其分子结构中的O—O键发生断裂,从而使PMS分解形成SO4?·或其他的活性物质. 此外,分析了活化PMS降解环境有机污染物的主要影响因素,其中影响均相系统PMS活化的因素包括过渡金属剂量、pH和水中阴离子等,过量的PMS和过渡金属可能成为SO4?·的抑制剂,pH不仅对氧化剂分解产生自由基起着关键作用,还影响过渡金属种类的形成及其与氧化剂反应的有效性,而水中阴离子会与有机化合物竞争和SO4?·发生反应. 最后,提出未来研究重点应在开发稳定高效活化PMS的金属氧化物、碳质材料,以及使用多种处理技术协同作用上,同时应加强对活化PMS技术降解有机污染物体系的降解产物和毒性分析的研究.   相似文献   

5.
生物炭驱动的过硫酸盐高级氧化技术近几年来受到了环境科学界的广泛关注.本文对当前生物炭基非金属过硫酸盐活化剂开发过程中采取的调控措施与改性手段进行了总结,汇总了生物炭基过硫酸盐高级氧化技术在难降解有机污染物削减方面的应用,同时阐述了生物炭活化过硫酸盐的机理,展望了生物炭基过硫酸盐活化剂未来的发展方向与挑战.  相似文献   

6.
基于硫酸根自由基的活化单过硫酸盐(peroxymonosulfate, PMS)的高级氧化技术已被广泛应用于污染物去除过程,但有关利用PMS直接氧化去除有机污染物的研究尚不充分.本研究系统地考察了柳氮磺胺吡啶(sulfasalazine, SSZ)在PMS直接氧化过程中的降解动力学及降解途径.结果表明,SSZ的降解符合准一级反应动力学规律,增加PMS浓度或提高离子强度能够加快SSZ的降解速率;碱性条件有利于反应进行; Cl~-的存在显著促进了SSZ的降解;地表水会抑制SSZ的降解.通过质谱分析及活性位点鉴定,推测羟基化和SO_2基团挤脱反应是氧化的主要途径.本研究为基于非活化PMS去除水中磺胺类抗生素的应用可行性提供了依据.  相似文献   

7.
碳基催化剂因其具有优异的催化活性、可控的表面活性特性和无二次污染的优点,在活化过硫酸盐去除水中有机污染物方面极具潜力. 然而,碳基材料存在制备成本高、重复使用催化活性大幅度降低等问题,限制了其实际应用. 以固废酒糟、粉煤灰为原料利用水热法制备新型掺碳沸石,通过进一步原位负载N得到具有高稳定性的C-N共掺杂沸石催化剂,并用于活化过一硫酸盐(PMS)降解四环素(TC). 结果表明:①制备的C-N共掺杂沸石催化剂具有一定吸附TC的效果及优异的活化PMS的性能,在一定范围内,TC的去除率随沸石、PMS投加量的增加而提高. ②对于初始浓度为10 mg/L的TC,沸石投加量为0.4 g/L、PMS投加量为3.25 mmol/L时,30 min对TC的去除率可达89.07%. ③该反应体系有较强的pH适应性,在pH为2~10范围内,体系对四环素的去除率保持在82.61%以上. ④无机阴离子Cl?对该体系降解TC有显著的促进作用,在Cl?浓度为0.2 mol/L时,20 min对TC的去除率可达100.00%. ⑤自由基淬灭试验表明,该降解反应中的非自由基(1O2)发挥了主要作用. ⑥紫外可见吸收光谱分析的结果表明,反应过程中TC的苯环结构被破坏. ⑦催化剂重复利用3次后对TC的去除率仍达76.01%,高于含碳沸石对TC的去除率. 研究显示,C-N共掺杂沸石催化剂+PMS体系对TC具有较强的去除能力、适用范围广、重复利用率高.   相似文献   

8.
采用纳米零价铁基生物炭(nZVI-BC)耦合过二硫酸钠(PDS)或过硫酸氢钾(PMS)构建吸附-高级氧化复合体系开展水中土霉素(OTC)的高效降解。考察了在不同PDS/PMS浓度、nZVI-BC投量、OTC浓度及初始pH条件下OTC的去除规律,并对体系中活性物种进行探究。结果表明:在0.20 mmol/L PDS/PMS,0.01 g nZVI-BC,50 mg/L OTC,原始pH为5.0±0.1条件下,OTC去除率可达到80%以上;SO4-·在nZVI-BC/PDS体系中对OTC降解占有绝对主导地位(贡献度为57.00%),nZVI-BC/PMS体系则主要依靠SO4-·、O2-·和1O2。  相似文献   

9.
通过简单的一锅法制备Fe2O3、Fe3N、单原子Fe(SA-Fe)和N掺杂的磁性石墨烯材料(Fe-MNG)应用于催化活化过一硫酸盐(PMS).结果表明,Fe-MNG/PMS体系可在宽的pH范围(3-10)氧化降解磺胺异恶唑(SIZ),降解率均达到99%以上.经过五次循环使用其对SIZ的降解率仍保持在95%以上.Fe-MNG中的SA-Fe、N等活性位点可高效催化活化PMS产生各种活性氧物种(ROS).淬灭实验和电子顺磁共振波谱分析表明Fe-MNG/PMS体系中产生多种ROS,包括硫酸根自由基(SO4·-)、羟基自由基(HO·)和单线态氧(1O2),证明存在自由基和非自由基两种氧化过程.此外,Fe-MNG具有大的比表面积(446.18m2/g),能将水中有机微污染物吸附富集到材料表面,同时在Fe-MNG表面催化PMS产生大量ROS,实现对有机微污染物的原位、高效氧化去除.Fe-MNG还具有磁性,易于分离和回收,具有潜在的应用前景.  相似文献   

10.
《环境科学与技术》2021,44(6):50-57
该文使用K_2FeO_4活化法构建了环境友好的基于狐尾藻的新型多孔石墨化生物炭(PGMC)。以PGMC作为催化剂来活化过一硫酸盐(PMS)降解水中的四环素(TC)。不同热解温度条件(700、800和900℃)对制备出的PGMC(PGMC700、PGMC800、PGMC900)的物理化学性质影响很大。PGMC800展现出最好活化PMS降解TC的性能得易于其更大的比表面积。在反应温度为25℃、PGMC800的用量为0.05 g/L、PMS的加入量为0.5 g/L的条件下,可以实现对30 mg/L TC的高效去除(30 min去除82.2%)。化学淬灭剂、电子顺磁共振(EPR)和线性扫描伏安(LSV)测试揭示了TC的降解得益于非自由基路径(~1O_2和电子传导)而不是自由基路径(SO_4·~-和·OH)。  相似文献   

11.
以ACF(活性炭纤维)为载体,制备出一种新的非均相催化剂ACF@Cit-Fe/S〔将Cit-Fe(柠檬酸铁)负载在ACF表面并引入S元素〕,并采用SEM-EDS(电镜-能谱)、XPS(X射线光电子能谱)对其进行表征,研究其活化PMS(过硫酸氢钾)降解染料RhB(罗丹明B)的降解效果.结果表明:①ACF表面成功负载了Cit-Fe和S元素,Cit-Fe和S元素的掺杂增强了ACF催化PMS的性能,能有效降解染料RhB,反应120 min时RhB的脱色率达98%.②ρ(ACF@Cit-Fe/S)、c(PMS)对RhB降解有一定的影响,ρ(ACF@Cit-Fe/S)为0.5 g/L、c(PMS)为6 mmol/L是降解RhB(10 mg/L)的最佳投加量.③温度对RhB降解速率的影响符合阿伦尼乌斯模型,通过计算得出活化能为39.47 kJ/mol,降解过程是一个表面反应控制过程.④以叔丁醇、甲醇、苯酚为分子探针的自由基清除试验显示,SO4-·(硫酸根自由基)和HO·(羟基自由基)是降解反应过程中主要的自由基,其主要存在于催化剂表面及其周围.研究显示,ACF@Cit-Fe/S能用于活化PMS的高级氧化体系中,ACF@Cit-Fe/S表面丰富的电子转移过程导致其活化PMS的能力增强,从而促进SO4-·和HO·的产生,提高RhB的降解效率.   相似文献   

12.
近年来,基于硫酸根自由基(SO4·-)的新型高级氧化技术研发及其在水污染控制和土壤修复方面的应用备受关注.锰基氧化物因其结构性质多变、自然丰度高、环境友好等优势,被广泛应用于活化过氧一硫酸盐(PMS)和过氧二硫酸盐(PDS)处理难降解有机污染物.该文对可活化PMS/PDS的锰基氧化物的类型、结构特征、合成方法及影响反应活性的因素等进行了介绍,重点对不同锰基催化剂活化PMS/PDS的反应机理进行了讨论,并对未来的研究和发展进行了展望,旨在为拓展锰基矿物材料环境应用和阐明过硫酸盐活化机制提供重要参考.结果表明:活化产生的SO4·-和羟基自由基(·OH)对污染物的降解起关键作用.SO4·-具有较高的稳定性和氧化性,在降解过程中发挥主导作用.复合型锰基氧化物相较于单一锰基氧化物表现出更优的催化反应活性.PMS和PDS活化的反应机理存在显著差异:前者通过Mn(Ⅳ)与Mn(Ⅲ)之间的氧化还原循环,先生成SO5·-再产生SO4·-,而后者是通过氧化还原反应相继生成S2O8·-及SO4·-.此外,MnO2活化PDS还存在仅生成单态氧的非自由基反应机理.现阶段锰基氧化物活化PDS的相关研究仍比较匮乏,值得未来进一步深入研究.锰基材料活化PDS/PMS产生的活泼中间体Mn(Ⅲ)的鉴定及对污染物降解的贡献仍需更多直接的试验证据.   相似文献   

13.
缪周伟 《环境工程》2020,38(5):165-170
以TPH污染土壤为研究对象,研究了不同化学氧化体系对TPH污染土壤的修复效果及影响因素。研究表明:Fenton、类Fenton及碱活化过硫酸盐3个体系都对TPH污染土壤有较好的修复效果。柠檬酸的加入改善了Fenton体系的催化作用,类Fenton体系降解效果最佳。TPH在类Fenton及碱活化过硫酸盐体系中的降解符合准一级反应动力学,提高H2O2、柠檬酸和过硫酸盐的浓度均有利于TPH的降解。强化混合、分次投加氧化剂及减小土壤粒径均可以提高TPH的降解效率,节约氧化剂用量。类Fenton体系中有效成分主要为·OH,碱活化过硫酸盐体系中除了·OH外,还存在SO4-·或O2-·等的作用,因此氧化剂利用率较高。  相似文献   

14.
采用溶胶-凝胶法制备硅藻土/MnFe2O4复合型催化剂(DMF),以金橙Ⅱ为目标污染物,分析DMF活化过一硫酸盐(PMS)的性能和作用机制。结果表明:1) MnFe2O4颗粒均匀负载于硅藻土上,使DMF具有更好的分散性和活化性;2) DMF对PMS的活化能力优于单一MnFe2O4,DMF (1:1)/PMS体系降解金橙Ⅱ符合准一级动力学模型,且降解速率是MnFe2O4/PMS体系的2.16倍,0.5 g/L DMF和0.5 mmol/L PMS在40 min内对50 mg/L金橙Ⅱ降解率达到93.1%;3)反应体系中存在·OH、SO4-·、1O2、·O2- 4种活性物种,其中·OH和SO4-·起主导作用;4) DMF复合材料具有更好的结构稳定性,金属离子溶出量远低于MnFe2O4。研究结果可为新型高效PMS催化剂在处理工业废水的实际应用提供参考。  相似文献   

15.
生物炭作为一种重要的碳质固体材料,其来源广、成本低、性质优良,在土壤改良和环境治理等领域得到广泛应用.该文主要分析总结了不同原料和制备条件对生物炭性质的影响以及生物炭在电子传递与催化等方面的重要作用.结果表明:生物炭的性质、产率等与制备原料和热解参数(热解温度、反应停留时间和加热速率等)等密切相关;相比快速热解,高温慢速热解更有利于生物炭产率和性能的提升;通过化学或物理方法对生物炭修饰改性可定向改变生物炭的比表面积、催化性能或吸附能力;生物炭中大量的表面含氧官能团、持久性自由基使其具备独特的氧化还原特性(如电子传递、催化氧化等),广泛应用于能源回收以及污染物降解去除等环境领域.该文从生物炭性能的优化提升、环境应用效能的影响因素和关键作用机制,以及生物炭的回收和再生利用等经济效益方面进行了总结和展望,为后续生物炭在环境领域的进一步应用提供了思路,具有重要的科研价值和现实意义.   相似文献   

16.
为增强Cu(Ⅱ)/PMS(PMS为活化过硫酸盐)体系的氧化能力,加速Cu(Ⅰ)和Cu(Ⅱ)之间的循环转化,以MO(甲基橙)为目标污染物,研究了Cu(Ⅱ)/PMS/UV(UV为紫外线)体系氧化降解MO的效果和反应机理,以及UV在Cu(Ⅱ)/PMS体系中的作用.结果表明:反应20 min时,Cu(Ⅱ)/PMS体系中MO的降解率为41.13%,Cu(Ⅱ)/PMS/UV体系中MO的降解率达到100%;通过投加TBA(叔丁醇)和EA(乙醇)发现,在酸性条件下体系的主要氧化物种是SO4-·(硫酸根自由基)和少量的·OH(羟基自由基);MO的降解率随pH的增大而减小;提高紫外灯功率和PMS投加量均有利于MO的降解;最佳Cu(Ⅱ)投加量为10.0 μmol/L,超过Cu(Ⅱ)的最佳投量会抑制MO的降解;MO的降解过程符合假一级动力学;紫外可见光谱图分析结果表明,MO最终被降解为共轭二烯类物质.研究显示,在Cu(Ⅱ)/PMS/UV体系中,UV可以有效促进Cu(Ⅱ)向Cu(Ⅰ)的转化,从而显著增强Cu(Ⅱ)/PMS体系的氧化能力,有效降解水中污染物.   相似文献   

17.
随着新能源汽车的推广和普及,锂离子电池的装机量呈爆发式增长,随之而来的是大量锂电池的报废,亟待回收处理. 已有锂电池回收技术提取锂、镍、钴、锰等金属后仍残留有一定量过渡金属的末端废渣,若不加以处理处置直接丢弃到环境中会造成重金属的环境污染风险. 本研究提出一种以锂电池回收的末端废渣为原料,与三聚氰胺固体粉末混合后热解的方法,制备出具有核壳结构的高性能催化剂,用于催化过硫酸盐氧化剂氧化去除有机污染物,实现其高值化再利用. 结果表明:①新制备的催化剂具有明显的核壳结构,核为镍钴氮化物和锰氧化物,壳为厚度约5.7~13.1 nm的石墨化碳层. ②以单过硫酸盐(PMS)为氧化剂,对新制备催化剂(NCM1)的催化性能进行了测试,发现其可高效催化PMS降解苯甲酸、苯酚等一系列难降解有机污染物,当NCM1的投加量为0.03 g/L时,浓度为0.05 mmol/L的难降解有机物—2,4-二氯苯酚,在吸附后2 h内降解完全. NCM1/PMS降解体系受环境条件的影响较纯自由基体系小. ③循环试验的结果表明,该材料可实现多次循环利用且催化效率基本保持稳定. ④对降解完成后体系中的金属离子进行测定发现,新制备的催化剂在催化降解过程中,金属离子仅有微量溶出,而原始废渣则大量溶出金属离子,说明与三聚氰胺混合热解可有效固定废渣中的金属. ⑤经淬灭试验、D2O替换和EPR测试等一系列试验,证明新催化剂催化单过硫酸盐降解有机污染物体系中硫酸根自由基和单线态氧均具有一定贡献,但还存在其他未被探明的机理. 研究显示,新制备的NCM1具有高PMS催化活性以及良好的稳定性和环境友好性,展现出巨大的应用潜力,对锂电池回收废渣的处理处置具有参考意义.   相似文献   

18.
安青  陈德珍  钦佩  岳霞 《中国环境科学》2021,41(10):4720-4735
回顾了常用的生物炭活化方法,包括酸活化、碱活化、气体活化、等离子体活化以及金属浸渍活化等,并且针对不同的活化方法对生物炭的孔径分布、比表面积、活性基团和活性位点的密度等理化特征及其对生物炭催化活性的影响进行了比较.最后,进一步探讨了采用不同的活化方法获得的生物炭的应用场景,以期为定制型功能生物炭及生物炭的新应用提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号