首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
不同SBR系统N2O排放及微生物群落比较   总被引:1,自引:0,他引:1  
为了解污水脱氮中微生物群落对N2O排放的影响,在相同的工艺条件下,研究了制药厂(A)和啤酒厂(B)2种不同来源污泥在SBR系统中的N2O排放特性.结果发现:①A和B 2个系统总氮去除率在97.5%和98.6%的情况下,脱氮中N2O态氮所占比例分别为6.35%和2.84%,相差2倍以上.②A系统的N2O排放时期主要集中在好氧硝化段,而B系统则主要集中在缺氧反硝化段.③在1个脱氮周期内,A系统只有1个N2O排放高峰,出现在好氧硝化段(第3小时);而B系统有2个N2O排放高峰,分别出现在好氧硝化段(第3小时)和缺氧反硝化段(第6小时).采用PCR-DGGE技术分析微生物群落特征发现,A系统和B系统的微生物群落有明显差异,表明污水脱氮中微生物群落是影响N2O排放的重要因素.通过优化微生物群落结构,可有效控制污水脱氮中N2O排放.   相似文献   

2.
陈诗  彭来  徐一峰  梁川州  倪丙杰 《环境工程》2022,40(6):97-106+122
氧化亚氮(N2O)的温室效应比CO2强265倍,可从废水生物脱氮过程中产生并直接排放,如果不对其加以控制,会显著增加污水处理厂的碳足迹。N2O排放的数学建模对于深入解析N2O产生机制、量化N2O排放、优化生物脱氮工艺和制定N2O减排策略具有重要意义。结合当前国内外研究现状,阐述了废水生物脱氮过程中N2O产生机制;归纳了基于不同机制建立的N2O数学模型,包括氨氧化细菌(ammonia-oxidizing bacteria,AOB)经过羟胺氧化途径和AOB反硝化途径产生N2O模型、异养反硝化途径产生N2O模型以及耦合AOB和异养反硝化细菌产生N2O模型;总结了新型生物脱氮系统N2O模型,实际工程应用情况及校准N2O数学模型中存在的问题;并对今后N2O数学模型的研究方向进行了展望。  相似文献   

3.
氧化亚氮的释放已经成为了一个全球性的环境问题,水体中N2O的释放量会随着氮含量的增加而增加.本文通过微宇宙系统的构建,分析氮的转化过程和氮转化基因的变化,并结合结构方程模型分析了温度、氨氮含量对水体N2O释放的贡献.研究结果发现氨氧化古菌和反硝化细菌丰度均与N2O释放呈正相关,表明水体中的硝化和反硝化作用都会造成N2O的释放.氨氮浓度的升高并不直接促进N2O的释放,而温度和通过硝化作用产生的硝态氮对N2O的释放有促进作用.此外,硝化速率通过促进亚硝态氮和反硝化菌的丰度而间接地促进N2O的释放.  相似文献   

4.
徐润泽  操家顺  方芳 《环境工程》2022,40(6):107-115
氧化亚氮(N2O)是一种温室气体,同时也是具有能源回收潜力的强氧化性物质。综述了促进N2O产生的新兴污水脱氮过程及提高N2O产生的方法,比较了不同方法的运行条件及N2O转化率,并指出了各种方法的不足之处。从识别N2O产生的关键影响因素和预测N2O产量2个方面综述了污水处理过程中N2O数据驱动模型的研究进展。目前N2O的增产方法主要包括耦合好氧-缺氧氮分解过程、单反应器生产过程及基因工程菌和半导体修饰菌增产过程。收集污水处理厂中的大数据可以建立N2O数据驱动模型,但是现有的数据驱动模型仅仅关注N2O减排。开发N2O的新型增产过程,优化控制增产过程的功能菌种,建立N2O数据驱动模型与N2O增产方法之间的关联性是未来N2O生产利用技术的发展方向。  相似文献   

5.
针对高负荷反应器中ANAMMOX颗粒污泥易上浮流失的问题,进行外源添加酰基高丝氨酸内酯类信号分子(AHLs)对污泥特性的影响研究.结果表明添加30mg/L辛酰基高丝氨酸内酯(C8-HSL)可对颗粒污泥沉降性能产生长期影响,能够有效控制高负荷UASB中ANAMMOX颗粒污泥上浮.仅在实验初期(0~20d)向反应器R2中添加C8-HSL,在实验进行至100d时R2中颗粒污泥B-EPS含量相比对照组R1降低15%,PN/PS值由4.22下降至2.14,同时污泥颗粒表面疏水性提高了26%,因此R2中颗粒污泥的沉降性能大幅提高(颗粒污泥密度增加了24%,沉速提高了90%).实验进行至100d,R2未发生较明显污泥上浮现象,此时氮容积负荷NLR为12.9kg-TN/(m3·d),氮容积去除率NRR高达11.3kg-TN/(m3·d),氮去除率达88%.己酰基高丝氨酸内酯(C6-HSL)可使污泥颗粒的活性有所提高,而十二烷酰基高丝氨酸内酯(C12-HSL)则对高负荷反应器中颗粒污泥的特性没有影响.  相似文献   

6.
人工湿地中基质的种类和填充方式会影响人工湿地中微生物的多样性及丰度,进而影响污水处理效果.通过在温室内构建空白-人工湿地(CW0)、铁矿石-人工湿地(CW1)、生物炭-人工湿地(CW2)和铁矿石+生物炭-人工湿地(CW3)这4组湿地,研究不同填料人工湿地系统的污水处理效果和温室气体排放及微生物群落结构的差异.结果表明,添加铁矿石或者生物炭能够提高-0.12%~1.7%的COD去除率.添加生物炭能够分别提升22.48%的NH+4-N和6.82%的NO-3-N去除率,并分别降低83.91%的CH4和30.81%的N2O排放通量.添加铁矿石能够降低1.12%的NH+4-N去除率,提高3.98%的NO-3-N去除率,并分别降低33.29%的CH4和25.2%的N2O排放通量.添加生物炭或者铁矿石均能够增加放线菌门(Actinobact...  相似文献   

7.
氧化亚氮(N2O)是主要的温室气体之一,其在大气中的浓度不断增加,其中,河流是大气N2O的重要排放源.N2O的排放是其产生和消耗过程综合作用的结果,其产生过程受到多种自然和人为因素的调控,深入了解河流N2O产生和消耗途径及其影响因素是制定有效减缓河流N2O排放措施的基础.本文概述了河流N2O产生和消耗的硝化、反硝化、硝化细菌反硝化、硝酸盐异化还原成铵等微生物过程和化学反硝化过程,梳理了抑制法、同位素标记法、同位素自然丰度法等在N2O产生途径识别及其来源贡献分析中的应用,着重阐述了N2O同位素异位体法(N2O分子内15N的位点特异性同位素值)在N2O产生途径解析中的应用以及影响其解析结果准确性的因素,最后分析了主要水环境因子及流域特征对河流N2O产生和排放的影响,并对未来研究进行了展望.  相似文献   

8.
污水生物脱氮系统中的硝化菌生长慢、易流失,人为添加N-酰基高丝氨酸内酯类(AHLs)群体感应信号分子,可能会强化硝化菌生物膜的形成,从而有助于富集硝化菌,提高硝化效率.本研究以采用低碳氮比(C∶N=8)人工配置废水驯化100 d后的硝化活性污泥为菌源,人为外加2μmol·L-1的AHLs信号分子(C8-HSL或OHHL),分析了两种信号分子对硝化污泥静态附着、氨氮动态降解及微生物生长速率的影响.研究结果表明,信号分子OHHL能快速强化微生物附着生长,且能在一定时间内持续发挥作用,有助于硝化生物膜的形成;而信号分子C8-HSL则能明显提高硝化污泥的氨氮降解速率;两种信号分子都能促进硝化污泥生长,提高微生物生长速率,增强硝化污泥活性,加速硝化污泥生物量累积.人为添加C8-HSL或OHHL信号分子,不仅能保证氨氮降解效率还能降低出水硝氮浓度,减轻氮污染.  相似文献   

9.
污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍.因此,国际上对N2O排放机制与控制策略的研究层出不穷.N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化学途径.常规硝化与反硝化(AOB+HDN)途径在正常运行工况下N2O排放量并不是很大,约只占进水TN负荷的1.3%;即使是HN-AD与COMAMMOX代谢过程,两者N2O产生量也不足TN负荷的0.5%.不可忽视的是AOB亚硝化及其同步反硝化,它们已被确认为是污水处理生物脱氮过程中N2O排放的首要途径;AOB过程中间产物(NH2OH与NOH)非生物化学过程以及AOB反硝化生物过程(主途径)共同导致的N2...  相似文献   

10.
四区一体反应器冬季启动脱氮特性及硝化菌群结构分析   总被引:2,自引:2,他引:0  
我国分散型污水处理问题亟待解决,研究开发了四区一体式生物膜-活性污泥生物脱氮反应器,采用梯度缩短HRT方法,考察了冬季8~15℃水温环境下的反应器COD、NH+4-N、TN去除效果,同时,采用荧光原位杂交技术(FISH)对种泥及其启动过程中的生物膜硝化菌群(AOB、NOB)结构进行分析,并对反应器运行效果与功能微生物的相关关系进行了探讨.结果表明,在HRT为9.2 h下COD、NH+4-N、TN去除率分别为92.11%、99.21%、61.63%;启动末期生物膜内AOB、NOB数量是种泥的5.82倍、6.14倍,硝化细菌占总菌量由6.12%上升至16.38%,成为生物膜的优势菌群;末期硝化效率由初期78.49%上升至97.52%,NOB数量增长5.61倍,AOB/NOB值优化为1.47,反应器内富集生长的AOB、NOB及合适的AOB/NOB比值是确保硝化出水水质的重要保障.  相似文献   

11.
污水处理系统中硝化菌的菌群结构和动态变化   总被引:3,自引:0,他引:3  
研究分析了4种不同工艺类型的城市污水处理厂中氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的丰度及菌群结构.实时定量PCR结果表明4种工艺中AOB菌群的丰度范围为8.56×106~4.46×107cells/gMLSS;NOB菌群的丰度为3.37×108~1.53×109cells/gMLSS.每个工艺中Nitrospira都是优势NOB,占NOB菌群的88% 以上. A2O工艺冬季AOB和Nitrospira丰度比夏季均有所降低,这是导致冬季生物脱氮效果变差的主要原因.基于 amoA基因的系统发育分析结果显示所有的序列属于Nitrosomonas,其中Nitrosomonas oligotropha cluster 占克隆文库的60.1%,是AOB 种群中的优势菌属,Nitrosomonas-like cluster和 Nitrosomonas europaea cluster次之,分别占克隆文库的29.6%和9.1%.N. europaea cluster只在A2O工艺中出现,且在A2O工艺夏季污泥样品克隆文库中达到44.7%.低DO运行使N. europaea cluster成为优势AOB是A2O工艺夏季出现较高亚硝酸盐积累率的主要原因.研究结果证实了城市污水处理厂中优势AOB和NOB分别为Nitrosomonas和Nitrospira,硝化菌群占总菌群的1%~7%,其丰度、相对含量和菌群结构是影响硝化效果的主要因素.  相似文献   

12.
采用间歇曝气在MBBR反应器中成功实现一段式部分硝化耦合厌氧氨氧化(PN/A)过程.结果表明,在实验温度为35℃,进水氨氮浓度为150.00mg/L,进水氮负荷为0.24kg/(m3·d),DO浓度为(1.41±0.24)mg/L条件下,反应器总氮去除效率达到83.74%.生物膜中厌氧氨氧化菌(AnAOB)和氨氧化菌(...  相似文献   

13.
氧化亚氮(N2O)是一种重要的痕量温室气体,而且在光照条件下平流层的N2O会与O3发生光化学反应,破坏臭氧层。海洋是大气中N2O的主要来源之一,海洋中N2O主要通过硝化和反硝化作用产生,而氨氧化作用是硝化作用的关键(限速)步骤,氨氧化古菌可能是氨氧化过程的主要执行者。本文先概述海洋中N2O分布以及影响氨氧化古菌(Ammonia oxidizing archaea,AOA)和氨氧化细菌(Ammonia oxidizing bacteria,AOB)的amoA(ammonia monooxygenase)丰度与活性的因素以及N2O生成机制研究现状,进而总结AOA和AOB在海洋N2O生成机制中起到的关键作用,最后结合全球气候变化、海洋酸化以及大洋OMZ区域扩大等前沿科学问题,对AOA、AOB以及N2O的生成机制研究进行了展望。  相似文献   

14.
在序批式生物反应器(SBR)基础上增设游离亚硝酸(FNA)污泥预处理单元,成功启动了SBR短程硝化(SBR-PN)过程。FNA对NOB的活性抑制远大于其对AOB的抑制,FNA=0.48 mg/L,两者活性差异最大。SBR运行稳定(阶段Ⅰ)后,利用0.48 mg/L的FNA对活性污泥进行24 h缺氧处理,经60 d驯化(阶段Ⅱ),SBR内NH4+-N去除率和亚硝态氮积累率(NAR)均达到95%以上,总氮(TN)去除率由(22.8±3.6)%增至(35.5±3.7)%。分段进水(阶段Ⅲ)方式提高了原水有机物利用率,TN去除率达到(64.0±2.5)%,最大NO2-积累和N2O产量分别由(16.4±1.6) mg/L和(0.85±0.09) mg/L降至(11.4±1.2) mg/L和(0.28±0.04) mg/L,N2O产率由(7.40±0.99)%降至(1.33±0.26)%。基于FNA缺氧抑菌选择性差异,采用分段进水方式运行SBR,防止了高浓度NO2-和NH4+共存,可实现稳定生活污水短程硝化过程并降低N2O释放。经FNA处理,活性污泥蛋白质(PN)和多糖(PS)释放增加,PN/PS由阶段Ⅰ的1.42增至阶段Ⅱ、Ⅲ的1.77和1.74,SVI由阶段Ⅰ的(113±12) mL/gVSS分别增至阶段Ⅱ、Ⅲ的(129±15),(122±13) mL/gVSS。  相似文献   

15.
为实现常温下高氨氮废水中氮的高效去除,选取8:1、12:1和15:1等3个气水比(GWR)条件,考察常温下曝气生物滤池(BAF)短程硝化-厌氧氨氧化(ANAMMOX)一体化自养脱氮工艺稳定运行的性能.研究结果表明:进水氨氮(NH4+-N)浓度为400mg/L、回流比为1:1的条件下,GWR为15:1脱氮效果最好,氨氮去除率(ARE)达90%以上,总氮(TN)去除负荷为1.1kgN/(m3·d),去除率达83%.GWR为15:1时,溶解氧(DO)为2.41~4.22mg/L,进水NH4+-N转化为亚硝(NO2--N)量增加,ANAMMOX活性增强.对生物膜进行功能菌种实时荧光定量PCR(qPCR)分析得出,GWR为15:1时,ANAMMOX和氨氧化菌(AOB)两者丰度均最高,高达1012 copies/g dry sludge以上,一体化脱氮效果最好.同时,研究表明提高GWR后ANAMMOX反应增强,而过程中无N2O生成,GWR为15:1时,N2O总释放量最小,释放因子为0.0012.  相似文献   

16.
以城市污水为研究对象,考察低温条件下通过生物添加强化氨氧化菌(AOB)活性,并进一步提高短程硝化-厌氧氨氧化一体化(SPN/A)工艺脱氮效果的可行性.平行运行2个序批式反应器(SBR) SBR1与SBR2,在间歇曝气条件下运行,控制温度由30℃梯度下降至15℃(30,27,24,21,18,15℃),随后逐步回升至30℃.在降温与升温过程中,向SBR2中定期投加短程硝化污泥强化AOB活性,SBR1作为空白试验不进行投加.结果表明,30℃时SBR1与SBR2在不外加短程硝化污泥的条件下均可成功启动并稳定运行,脱氮效果均良好;温度降至15℃时,SBR1与SBR2出水NH4+-N分别为36.38,33.10mg/L,总氮去除率分别为30.72%与35.76%,2个反应器脱氮效果均变差,SBR2较SBR1抗低温能力较强;梯度升温至30℃时,SBR1与SBR2总氮去除率分别升至52.43%与63.60%.通过考察SBR1与SBR2菌群活性可知,2个反应器的菌群活性均随着温度降低而降低,但SBR2的AOB丰度活性均高于SBR1;温度回升阶段,2个反应器的菌群活性有所升高,其中SBR2亚硝酸盐氧化细菌(NOB)活性受到抑制持续降低,推测这是因为SBR2中的AOB活性得到强化后,产生更多的亚硝酸盐,厌氧氨氧化菌(Anammox)可获得基质增多,造成Anammox活性丰度较高,所以SBR2脱氮效果相对较好.因此,在低温条件下通过生物添加强化SPN/A系统中AOB活性,可提高系统抗温度冲击能力,利于系统脱氮效果的恢复.  相似文献   

17.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

18.
针对目前厌氧氨氧化系统内微生物的研究,主要以厌氧氨氧化菌本身这一情况,本研究对长期稳定运行的Anammox滤池内微生物菌群结构进行了测定,同时测试与分析了滤池内厌氧氨氧化菌(AnAOB)、氨氧化菌(AOB)、亚硝酸盐氧化细菌(NOB)和反硝化菌(DNB)的关键动力学常数,探究了溶解氧(DO)浓度从0.2mg/L增加至1.5mg/L,AnAOB、AOB以及NOB活性的变化.结果表明,长期稳定运行的Anammox滤池是一个以厌氧氨氧化功能为主,多菌群共存的混合体系.滤池内厌氧氨氧化活性最高,为5.3mgN/(gVSS·h),同时系统内DNB和AOB也具有一定活性.DO在0.2~1.5mg/L范围内,AnAOB活性变化不大;随着DO浓度增加,AOB比氨氧化速率从0.76mgN/(gVSS·h)增加到1.08mgN/(gVSS·h),通过Monod方程进一步得到AOB氧半饱和常数(KO2,AOB)为(0.106±0.010) mg/L,表明系统内AOB对氧具有极高的亲和力;整个过程基本检测不到NOB的活性.厌氧氨氧化系统中主要功能菌群共存,且相互竞争底物.  相似文献   

19.
为强化城市污水短程硝化-厌氧氨氧化(SPNA)系统脱氮性能与稳定性,在间歇曝气条件下研究投加外源全程硝化污泥对城市污水SPNA系统的影响及机理.结果显示,空白组(SBR3)总氮去除率由35.5%升高至66.3%,短周期分批次投加外源全程硝化污泥(SBR2,投加周期为5d,投加比为2.5%)与长周期分批次投加(SBR1,投加周期为20d,投加比为10%)的SPNA系统总氮去除率分别由31.7%和36.5%升高至76.3%和67.2%,这表明,投加全程硝化污泥有利于提高SPNA系统的脱氮性能,且当投加总量相同时,短周期分批次投加的效果优于长周期分批次投加.功能菌活性结果与脱氮效果一致,SBR1~SBR3的厌氧氨氧化菌(AnAOB)最大活性分别由3.43mg-N/(L·h)升高至7.66,8.19和7.31mg-N/(L·h),氨氧化细菌(AOB)与亚硝酸盐氧化菌(NOB)活性比分别为8.79,9.83和8.78.在间歇曝气条件下投加全程硝化污泥,可选择性抑制NOB、富集AOB,提高AOB与NOB的活性比,利于稳定短程硝化效果,为AnAOB提供稳定的基质,且短周期分批次投加可降低外源硝化污泥中的NOB对系统的冲击,更有利于实现高AOB与NOB活性比,提高系统稳定性.此外,内源短程反硝化菌Candidatus_Competibacter相对丰度明显升高,可为AnAOB提供更多的亚硝酸盐氮,进一步利于AnAOB富集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号