首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 93 毫秒
1.
为探究典型岩溶槽谷区重庆青木关地下河流域水中多环芳烃(PAHs)的含量、组成、来源及污染特征,于2014年对青木关地下河流域中3种不同类型水体进行了连续7个月的采样监测,并利用气相色谱-质谱联用仪(GC-MS)测定了水中16种优控多环芳烃含量.结果表明,地下河水、表层岩溶泉水和地表水中∑PAHs含量变化范围分别为73.9~339.0、76.2~212.0和81.9~272.0 ng·L-1,平均值分别为134、138和173ng·L-1;PAHs组成以2~3环为主,平均占总含量的82%.通过对PAHs的组成对比分析表明,PAHs在迁移过程中地下环境介质对PAHs存在吸附作用.燃烧源是流域内水中PAHs的主要来源,PAHs污染水平较低,个别中低环PAHs含量超过水质标准,高环PAHs超标仅出现在2014年11月的地表水和地下河出口水样中.  相似文献   

2.
2014年6月降雨期间在重庆南山老龙洞地下河出口处进行连续采样监测,利用GC-MS定量分析地下河溶解态中16种优控多环芳烃(PAHs)的含量,研究了降雨期间地下河溶解态PAHs变化特征及来源.结果表明,地下河溶解态PAHs对降雨反应迅速,ΣPAHs出现4个峰值,有2个出现在流量上升阶段,另外两个分别出现在流量最大值处和流量下降阶段.ΣPAHs范围为101~3 624 ng·L-1,平均值578 ng·L-1,7种致癌性PAHs变化较大,含量变化为ND~336 ng·L-1,平均值31.1 ng·L-1,PAHs的组成以低环(2、3环)为主,占水体ΣPAHs的86.17%;降雨对ΣPAHs影响较大,主要表现为雨水对大气污染物的清除及地表径流对地表污染物的冲刷.降雨期间水体中PAHs主要来源于石油类产品、煤炭等化石燃料的不完全燃烧、天然成岩过程,降雨期间老龙洞地下河水体中PAHs污染大部分为中等到重污染水平.  相似文献   

3.
为明确重庆青木关和老龙洞地下河流域地下水中多环芳烃(PAHs)的含量及其污染水平,全年共采集两流域地下河水样品84个,利用气相色谱质谱联用系统(GC-MS)分别测定了地下水中的16种PAHs含量,分析了PAHs在两条地下河流域中的空间分布特征,并应用物种敏感度分布法(species sensitivity distribution, SSD)评价了单体PAH生态风险和联合生态风险,分别应用浓度加和模型和效应加和模型计算了两条地下河流域水中单体PAH潜在影响比例(potential affected fractions, PAFs)及∑PAHs潜在累积影响比例(msPAF)。结果表明,青木关地下河水中∑PAHs浓度为73.8~480 ng/L,均值为224 ng/L,老龙洞地下河中∑PAHs浓度变化较大,为81.5~15 200 ng/L,均值为1 648 ng/L。应用效应加和模型计算出青木关地下河中∑PAH8的msPAFRA范围为0.145 9%~2.745 3%,均值为1.369 2%;老龙洞流域msPAFRA范围为1.001 1%~2.866 5%,均值为1.774 7%,整体高于青木关地下河流域。单体PAH的PAFs在两条地下河流域均呈现Bap>Ant>Pyr>Fla>Flu>Ace>Phe>Nap的趋势,并且小于5%。两条地下河流域水体PAHs含量及生态风险均呈现入口大于出口的趋势,且生态风险的分布特征表明青木关和老龙洞地下河流域水生生态风险主要受BaP的影响,所以应避免工业及生活污水直接排入地下河以及直接饮食地下河水和生物。  相似文献   

4.
岩溶地下河表层沉积物多环芳烃的污染及生态风险研究   总被引:6,自引:4,他引:2  
为了解重庆南山老龙洞岩溶地下河表层沉积物中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的污染特征及生态风险,分析了地下河上游及出口表层沉积物样品中16种优先控制PAHs的含量和组成.结果表明,沉积物中PAHs总量在58.2~3 598 ng·g-1之间,大部分在100~5 000 ng·g-1之间,处于中等到高污染水平;从组成来看,老龙洞组成以2~4环为主,占到75.1%,仙女洞以4~6环相对富集,其比例为56.6%;老龙洞沉积物中PAHs主要来源于上游水体传输及地表土壤的输入,PAHs在地下河管道中的迁移表现为2~3环PAHs迁移距离远,4~6环的PAHs被强烈地吸附于沉积物中,迁移能力不足,从而富集于地下河管道中;生态风险评价结果表明,老龙洞沉积物PAHs很少产生负面生态效应,而仙女洞沉积物产生负面生态效应概率较大,一旦PAHs逐渐往下游迁移,将对下游的生态构成威胁.  相似文献   

5.
多环芳烃在岩溶地下河表层沉积物-水相的分配   总被引:5,自引:3,他引:2  
蓝家程  孙玉川  肖时珍 《环境科学》2015,36(11):4081-4087
利用实测老龙洞地下河水中和沉积物中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的实际浓度,获取了溶解相-沉积物中PAHs的分配系数Kp值.研究了老龙洞地下河PAHs在水相和沉积物中的质量浓度变化及其在水相和沉积物间的分配.研究结果表明水相和沉积物中PAHs质量浓度分别为81.5~8 089 ng·L-1,平均值(1 439±2 248)ng·L-1和58.2~1 051 ng·g-1,平均值(367.9±342.6)ng·g-1;PAHs组成均以2~3环为主,但沉积物中明显富集高环PAHs.沉积物-水相Kp值分布在55.74~46 067 L·kg-1范围内,随PAHs环数的增加而增大.沉积物-水相中实测的有机碳分配系数(lg Koc)大部分高于预测值上限,PAHs强烈吸附在沉积物上.lg Koc与正辛醇-水分配系数(lg Kow)呈较好的线性自由能关系(R2=0.75),但其斜率小于1,推测地下河沉积物对PAHs化合物的吸收能力较差.  相似文献   

6.
岩溶地下河系统中有机氯的分布特征与来源分析   总被引:2,自引:0,他引:2  
张媚  孙玉川  谢正兰  余琴  徐昕 《环境科学》2016,37(9):3356-3364
选取重庆老龙洞、青木关岩溶地下河为研究对象,采用气相色谱仪-微池电子捕获检测器(GC-μECD)分析两条地下河水体中21种有机氯农药(OCPs)的浓度.结果表明,南山地下河中六六六(HCHs)和艾氏剂类化合物(ALDs)是主要检出物,青木关地下河中HCHs和甲氧滴滴涕是主要检出物.南山、青木关地下河中均未检出o,p'-DDE、p,p'-DDE、o,p'-DDD,同时,青木关地下河还未检出o,p'-DDT、狄氏剂,其余OCPs在两条地下河中检出率高达100%.青木关地下河中OCPs浓度范围为145~278 ng·L-1之间,平均值为213 ng·L-1;南山老龙洞地下河中OCPs浓度介于17.7~40.8 ng·L-1之间,平均值为32.7ng·L-1.两条地下河中各OCPs组分表现为地下河出口大于入口.通过对OCPs污染来源分析,发现两地下河流域滴滴涕(DDTs)主要来自于历史上工业DDTs输入,氯丹主要来自于大气沉降.六六六(HCHs)主要来源是林丹的输入,南山地下河属于历史污染,青木关地下河上游的甘家槽有新的HCHs输入.与国内外其他各水体相比,南山地下河水体中HCHs、DDTs浓度处于低水平;青木关下河处于中等偏高水平.结合中外用水卫生标准,发现南山地下河和青木关地下河未超过饮水安全标准.青木关应禁止农田施用有机氯农药,保护地下河生态环境.  相似文献   

7.
重庆老龙洞地下河流域氮、磷及微生物污染调查研究   总被引:12,自引:8,他引:4  
蓝家程  杨平恒  任坤  陈雪彬  徐昕  胡宁 《环境科学》2014,35(4):1297-1303
随着城镇化不断发展,我国地下水普遍遭受了不同程度的污染,尤其是西南岩溶区地下水是当地重要的水源,一旦遭受污染将很难恢复.本研究选取NO-3、PO34、NH+4和总细菌(total coliform)、大肠杆菌(total E.coli)、粪大肠杆菌(fecal coliform)作为指标,对重庆南山老龙洞流域进行多年来的调查研究.结果表明,老龙洞流域地下水NO-3、NH+4、PO3-4含量均超过天然水规定值,尤其以NH+4、PO3-4污染较为严重.桂花湾泉NO-3含量为19.78~68.55 mg·L-1,有的月份超过了世界卫生组织规定的标准50 mg·L-1.老龙洞出口NH+4、PO3-4含量分别为2.71~12.92 mg·L-1、0.16~11.22 mg·L-1,是污染最重的地下水.老龙洞地下河NO-3含量低于岩溶表层泉,而NH+4、PO3-4含量则高于表层岩溶泉.城镇化的发展、农田减少以及洞内还原环境是导致老龙洞地下河NO-3含量从2008~2013年降低的原因,而高PO3-4含量污水不断输入地下河使得老龙洞地下河PO3-4含量呈增加趋势.微生物污染极为严重,甚至远超过中国地下水和饮用水规定的Ⅴ类标准,以粪大肠菌为例,地下水中其含量波动范围为3.4×104~3.68×104CFU·mL-1.岩溶区由于特殊的水文地质结构,岩溶洼地、天窗、落水洞导致岩溶地下水极易遭受到污染.农业活动、城镇、企业和居民点生产生活排污,是地下水氮、磷和微生物污染的主要来源.  相似文献   

8.
岩溶地下河水中多环芳烃、脂肪酸分布特征及来源分析   总被引:2,自引:1,他引:1  
为探究重庆青木关岩溶地下河水中多环芳烃(PAHs)和脂肪酸的含量组成、分布特征、来源及污染水平,2013年雨季和旱季分别于地下河中进行水样采集,并利用气相色谱-质谱联用仪(GC-MS)对水样中PAHs和脂肪酸的组分进行定量分析.结果表明,青木关地下河水中PAHs和脂肪酸的含量范围分别为77.3~702 ng·L~(-1)和3 302~45 254 ng·L~(-1).组成上,PAHs以2~3环为主,其比例高于90%,脂肪酸碳数范围为C10~C28,以饱和直链脂肪酸为主,其次为单不饱和脂肪酸.分布特征上,雨季:地下河水中各采样点PAHs的含量差异较小,脂肪酸的含量在入口、出露处和出口呈现依次降低的趋势,其中出露处和出口脂肪酸的含量较为接近;旱季:地下河水中PAHs含量在入口、出露处和出口呈现先降后升的趋势,脂肪酸含量在各采样点较为接近.总体上,地下河水中PAHs和脂肪酸的含量都表现为雨季显著高于旱季.来源分析表明,青木关地下河水中PAHs主要来源于该河流域煤和木材、农作物秸秆等生物质的燃烧;脂肪酸主要来自该河流域内硅藻、绿藻等水生藻类和细菌,其中以水生藻类的贡献占主导.地下河水受到PAHs中轻度污染,相对于旱季,雨季污染更严重.  相似文献   

9.
广西大石围天坑群地下河水中多环芳烃的污染特征   总被引:13,自引:9,他引:4  
为了确定典型喀斯特区广西大石围天坑群地下河多环芳烃的组成、来源及污染特征,沿途采集了8个断面的表层水样品,利用GC-MS仪测试了16种优控多环芳烃(PAHs).结果表明, 地下河水中PAHs(总量PAHs)浓度为54.7~192.0 ng/L,平均值为102.3 ng/L, PAHs组成以2~3环为主,占65.1%. 地下河沿程水中的PAHs浓度变化表明,上游高于下游,是因为城镇污水的排放,同时地下河对4~6环PAHs具有吸附作用;大石围天坑断面的PAHs浓度显著增高93.8%,是由于地下河系统中环境介质的释放和大气传输;大石围支流汇合处的PAHs浓度被稀释降低了47.3%;百朗出口断面的PAHs浓度分别高于进口和大石围断面128.3%和17.8%. PAHs来源分析表明,城镇和大石围天坑区域显示以石油类及其燃烧源为主.然而,城镇的石油类源主要是人为输入,大石围天坑的则主要是天然输入;其余乡村地区显示以草木、煤燃烧源为主.与其他地区比较,大石围天坑群地下河水中PAHs污染处于较低的水平,但苯并[a]芘浓度6个断面超过国家地表水环境质量标准.  相似文献   

10.
岩溶地下河流域表层土壤多环芳烃污染特征及来源分析   总被引:10,自引:8,他引:2  
蓝家程  孙玉川  师阳  徐昕  袁道先  胡宁 《环境科学》2014,35(8):2937-2943
采集重庆南山老龙洞地下河流域农田土壤(0~20 cm),利用气相色谱-质谱联用仪(GC/MC)测定了土壤样品中16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,分析其含量和组成,污染水平及污染来源.结果表明,流域内不同地点表层土壤16种PAHs总量变化范围为277~3301 ng·g-1,平均值为752.6 ng·g-1±635.5 ng·g-1,所有样品均遭受污染,其中57%为轻污染,29%为污染土壤,而14%为重污染.多环芳烃的组成以2~3环为主,占总量的28.72%~72.68%,平均值为48.20%;4环和5~6环含量分别为7.77%和34.03%.土壤PAHs含量与有机质(SOM)含量显著相关,而与pH值相关性不强.比值法和主成分分析(PCA)表明,流域内土壤主要来自交通排放与煤炭、石油及生物质燃烧的混合源以及石油源.  相似文献   

11.
广西大石围天坑中多环芳烃的大气传输与分异   总被引:6,自引:4,他引:2  
孔祥胜  祁士华  孙骞  黄保健 《环境科学》2012,33(12):4212-4219
选择典型的岩溶地区广西乐业大石围天坑群为研究对象,利用聚氨酯泡沫被动采样器(PUF-PAS)采集大石围天坑口部至地下河剖面空气样品,并进行了气象参数的观测.利用气相色谱-质谱仪(GC-MS)测定16种多环芳烃(PAHs)优先控制污染物.结果表明,大石围天坑至地下河空气中ΣPAHs浓度范围为33.76~150.86 ng·d-1,平均值80.36 ng·d-1,其中绝壁、底部和地下河浓度分别为67.17、85.36和101.67 ng·d-1;空气中PAHs以2~3环的菲、蒽、萘、芴4种为主,占87.97%.PHAs的源来自于大气传输的化石燃料的燃烧.大石围天坑空气中PAHs的富集与传输过程为:地表-绝壁-底部-地下河,且浓度随深度/长度的增加有明显的增加趋势,在西峰脚、天坑底部和地下河处,低分子量的PAHs菲、蒽、芴和荧蒽发生了分异作用.温度是影响天坑中PAHs大气传输、富集的主要因子,其次为风向、风速和相对湿度;相对湿度和温度都是PAHs分异作用的主要因子,风速和风向为次要因子.总体上,天坑明显地展现了持久性有机污染物(POPs)的"冷陷阱效应"。  相似文献   

12.
舟山青浜岛不同环境介质中PAHs的分布特征   总被引:2,自引:2,他引:0  
于2013年7月在青浜岛上采集11个土壤样品、3个大气被动采样样品以及周边3个海水样品,分析了样品中16种多环芳烃(PAHs)的含量,并对其分布特征、来源、生态风险进行了讨论.结果表明,土壤、海水和大气中Σ16PAHs的含量范围分别为60.30~123.34 ng·g-1(平均值为105.49 ng·g-1)、45.96~101.08 ng·L-1(平均值为66.45 ng·L-1)和5.09~5.41ng·d-1(平均值为5.35 ng·d-1).分布特征为:潮汐带土壤中PAHs含量低于非潮汐带;3个海水样中,以靠近水文条件复杂的海域内样品中的PAHs含量最高;岛上大气中PAHs分布均匀.土壤、海水和大气中PAHs主要以2~4环的PAHs为主;通过比值法和因子分析得出,青浜岛土壤中的PAHs来源于煤、木炭等生物质燃烧以及柴油、汽油的燃烧,海水和大气中的PAHs来源于混合源.生态风险评价结果表明青浜岛土壤和周边海水中PAHs生态风险较低.  相似文献   

13.
长江三角洲区域表土中多环芳烃的近期分布与来源   总被引:13,自引:10,他引:3  
采集长江三角洲区域11个地市范围内的243个样点的表层土壤样品,针对29种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)浓度的空间分布模式、组分谱特征以及初步排放源进行分析.结果表明,研究区域内总PAHs浓度范围在21.0~3 578.5 ng·g~(-1),算术均值310.6 ng·g~(-1),标准偏差459.1 ng·g~(-1).区域PAHs浓度表现出较大的空间分布差异.此外,表土PAHs浓度与表土总有机碳分数TOC呈现正相关.研究涉及的11个地市中,表土PAHs浓度的高值主要集中在苏州辖区,可达759.0 ng·g~(-1)±1 132.9 ng·g~(-1);而无锡(565.3 ng·g~(-1)±705.5 ng·g~(-1))、上海(349.4 ng·g~(-1)±220.1 ng·g~(-1))两市表土的PAHs平均含量仅次于苏州.全区域表土中PAHs组分以2~4环的中、低环组分为主,其中低环比例最高.利用特征比值与主成分分析,可初步判断长江三角洲地区表土中PAHs的近期主要排放源为混合源,即工业燃煤和生物质的燃烧过程同时,局部区域还涉及交通尾气排放.  相似文献   

14.
为阐述青木关地下河中溶解态正构烷烃和脂肪酸的来源、迁移及转化研究,2013年7月31日、10月25日分别在青木关地下河入口、天窗和出口处进行采样,并利用气相色谱-质谱联用仪(GC-MS)对样品中溶解态正构烷烃、脂肪酸的组分进行定量分析.结果表明,7月和10月样品中溶解态正构烷烃、脂肪酸的平均含量分别为1 354、667 ng·L-1和24 203、2 526ng·L-1.溶解态正构烷烃和脂肪酸的含量随地下河运移距离的增加均呈降低的趋势;基于正构烷烃分子特征参数CPI、OEP、Paq和R(ΣC≤20含量与总量的百分比)发现7月青木关地下河中溶解态正构烷烃主要来源于细菌等微生物和藻类.10月主要来源于地表水生植物,但随着地下河运移距离的增加,藻类和细菌等微生物的贡献逐渐增大;溶解态脂肪酸C16:0比例最高,结合碳峰分布特征显示7月和10月水样中,藻类和细菌等微生物为地下河中溶解态脂肪酸的主要来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号