首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
一体式絮体-超滤工艺去除腐殖酸效能与机制   总被引:2,自引:2,他引:0  
李文江  于莉芳  苗瑞  马百文 《环境科学》2018,39(3):1248-1255
近年来,一体式吸附剂-超滤膜组合工艺以其效率高、膜污染程度低且占地面积小等优势逐渐在水处理中广泛应用.然而,目前所用吸附剂多为颗粒型,如粉末活性炭、碳纳米管、纳米铁等.不仅长期运行极易引起膜表面损伤,且多数吸附剂成本较高.为有效克服上述问题,以水处理中广泛应用的铝盐混凝剂水解絮体为吸附剂,以天然水体中普遍存在的腐殖酸为目标污染物,考察了松散且密度低的絮体直接注入膜池后腐殖酸的去除效率及膜污染行为.结果表明,曝气方式、絮体注入频率及注入量均能不同程度地影响该组合工艺效能.与间歇曝气和一次性注入相比,采用连续曝气且分批次注入时,絮体在膜表面形成松散"保护膜",充分发挥了絮体作用,腐殖酸去除效率较高,膜污染程度显著降低.单独HA污染超滤膜时,5d内跨膜压差急剧增至74.8 k Pa,而连续曝气且每次2 d注入5.4 mmol·L-1絮体运行8 d后跨膜压差仅增至6.3 k Pa.此时HA去除率为73.3%(8 d),远高于无絮体注入时(5 d,32.1%).此外,分批次注入絮体时仅有少量腐殖酸吸附于膜孔,松散滤饼层为主要污染方式,且单次注入量越大,运行结束经水洗后膜表面平均孔径也越大.本研究表明一体式松散絮体-超滤膜组合工艺在水处理中具有潜在应用前景.  相似文献   

2.
初永宝  周绪芝  王燕  王倩 《环境科学》2010,31(5):1206-1210
采用铝基无机有机复合絮凝剂(PAC-JY01)对含有腐殖酸与高岭土的模拟水样进行强化混凝处理,取混凝后出水进行超滤,通过测定超滤前后出水水质以及超滤膜运行状况,探讨PAC-JY01对超滤膜工艺效能的影响.结果表明,在强化混凝-超滤联用工艺中PAC-JY01的最佳投加量为3mg/L,最佳pH=6.在最佳条件下,UV254和浊度的去除率分别达到79.30%、99.70%;在实验运行条件下,较大的絮体容易在膜表面沉积而造成膜污染.  相似文献   

3.
采用“铁盐絮体预负载-超滤”耦合工艺,有效提高了水中金属锑的去除效果,缓解超滤污染.结果表明,当水样pH<7时,锑(V)的去除效率高达98%以上,且出水锑(V)浓度远低于5μg/L;腐殖酸去除效果在不同化学条件下均能保持95%以上.铁盐絮体预负载层能作为超滤膜的屏障,减少了超滤膜接触污染物几率,当水样pH=6时,不可逆污染的相对值最低为0.015.  相似文献   

4.
以nm-SiO2和μm-SiO2体系为研究对象,使用3种不同Al形态的混凝剂(AlCl3、Al13和Al30)进行混凝-超滤实验,考察不同pH值下SiO2去除率、出水余Al及混凝预处理对膜通量的影响,借助马尔文激光粒度仪、SEM、BET和AFM表征絮体性质及在超滤膜表面的分布和作用力.结果表明,nm-SiO2体系中SiO2去除率均低于μm-SiO2体系,在纳米颗粒物体系中投加混凝剂后膜通量从0.68分别提升至0.96(AlCl3)、0.86(Al13)和0.87(Al30),微米颗粒物体系中投加3种混凝剂后膜通量从0.79提升至0.80~0.84.微米级颗粒物是颗粒间的碰撞,纳米级颗粒物主要以团聚态的形式碰撞.低聚态铝(Ala)和颗粒物形成絮体的粒径均大于150μm,体系zeta电位为负与膜表面产生斥力;在中性条件下Al13与颗粒物形成絮体的强度因子远高于AlCl3和Al30,中聚态铝(Alb)将膜孔内部较小颗粒物堵塞形成的不可逆膜污染转移成膜孔表面的可逆膜污染;高聚态铝(Alc)具有较强吸附架桥和网捕卷扫能力,无定形、不规则的团聚态小颗粒在这一过程中形成较大絮体缓解膜污染.  相似文献   

5.
一体式铝盐絮体-超滤膜净水效能与机制   总被引:1,自引:1,他引:0  
一体式膜工艺以其占地面积小、污染物去除效率高等优点在水处理工艺中逐渐应用.然而,长期运行后,传统颗粒性吸附剂存在加剧膜表面损伤的风险,同时大多数研究所用吸附剂价格较高,如纳米铁、碳纳米管等.针对上述问题,本文将铝盐混凝剂水解后形成的松散絮体直接注入膜池,基于腐殖酸(HA)和密云水库原水,考察了一体式絮体-超滤膜工艺运行效能及膜污染行为.结果表明,仅HA过膜时,第12 d跨膜压差(transmembrane pressure,TMP)急剧增至76. 4 k Pa,将膜组件取出经自来水清洗膜表面后TMP降为10. 1 k Pa (13 d),表明滤饼层是膜污染的主要形式,并且运行期间HA平均去除率仅为23. 3%.絮体注入频率、曝气强度及溶液pH能显著影响该工艺运行效能,尤其溶液pH.当采用连续投加方式将43. 2mmol·L-1铝盐絮体注入到pH为6. 0、曝气速率为0. 3 L·min-1膜池内时,膜污染程度显著降低,第12 d时TMP仅增长到19. 5 k Pa,清洗之后TMP降为5. 6 k Pa (13 d),此时HA平均去除率提高至61. 2%.此外,密云水库原水实验表明,当原水直接过膜时,TMP也急剧增加,运行12 d时TMP达到38. 0 k Pa,而清洗膜表面后TMP降低至3. 8 k Pa (13 d),滤饼层仍然为主要污染方式,同时有机质平均去除率为7. 5%.在上述最佳工艺条件下(曝气0. 3 L·min-1、溶液pH 6. 0)投加43. 2mmol·L-1铝盐絮体时,TMP增长也极其缓慢,12 d时仅增至6. 1 k Pa,膜表面清洗后TMP降至2. 3 k Pa (13 d),有机质平均去除率高达58. 6%.本研究表明一体式铝盐絮体-超滤膜在水处理中具有潜在的应用价值.  相似文献   

6.
The purpose of this study is to understand the effect and mechanism of preventing membrane fouling, by coagulation pretreatment, in terms of fractional component and molecular weight of natural organic matter (NOM). A relatively higher molecular weight (MW) of hydrophobic compounds was responsible for a rapid decline in the ultrafiltration flux. Coagulation could effectively remove the hydrophobic organics, resulting in the increase of flux. It was found that a lower MW of neutral hydrophilic compounds, which could remove inadequately by coagulation, was responsible for the slow declining flux. The fluxes in the filtration of coagulated water and supernatant water were compared and the results showed that a lower MW of neutral hydrophilic compounds remained in the supernatant water after coagulation could be rejected by a membrane, resulting in fouling. It was also found that the coagulated flocs could absorb neutral hydrophilic compounds effectively. Therefore, with the coagulated flocs formed on the membrane surface, the flux decline could be improved.  相似文献   

7.
以聚硫酸铁(PFS)为混凝剂,微砂为载体颗粒,系统考察了采用加载絮凝-超滤联用工艺净化含高岭土、腐植酸和锑[Sb(Ⅲ)]的模拟原水过程中,不同PFS和微砂投加量条件下加载絮体形态特性以及其对超滤膜通量衰减、膜污染可逆性和宏观出水水质等的影响,并分析了膜污染机理.结果表明,PFS投加量对絮体形态及膜滤效能和膜污染影响显著,且投加量过少或过多均会产生不利影响,以30mg/L为宜;与不投加微砂的工况相比,加入微砂更易于形成大而结构较为松散的絮体,可有效削弱不可逆膜污染,并获得较为稳定的超滤出水水质;超滤末端膜比通量与絮体平均粒径呈良好的正相关性(R2=0.8774),但因加载絮凝体系中引起分形维数变大的不同类型颗粒(包括小粒径范围絮体和未被加载絮体捕获的微砂)对超滤净水过程产生的影响各异,致使膜通量与分形维数的负相关性较差(R2=0.5760).  相似文献   

8.
通过中试试验考察了高锰酸盐复合药剂(PPC)预氧化强化混凝/沉淀/超滤的组合工艺的除藻效能以及PPC预氧化对藻类引起的膜污染的缓解作用,并对其机理进行了探讨.试验结果表明,投加0.6mg·L-1PPC能使预处理阶段对藻类的平均去除率提高约28%.组合工艺处理高藻水时,PPC预氧化通过强化预处理,降低膜表面的污染负荷,对藻源污染物引起可逆和不可逆污染均具有一定的缓解作用.化学清洗试验结果表明,碱洗对超滤膜TMP恢复效果远远强于酸洗,因而有机物是超滤膜处理高藻水时的主要污染物质.  相似文献   

9.
The objective of this study was to investigate the effect of different Al species and chitosan (CS) dosages on coagulation performance, floc characteristics (floc sizes, strength and regrowth ability and fractal dimension) and membrane resistance in a coagulation–ultrafiltration hybrid process. Results showed that different Al species combined with humic acid in diverse ways. Ala had better removal efficiency, as determined by UV254 and dissolved organic carbon, which could be further improved by the addition of CS. In addition, the optimal dosage of different Al species was determined to be 4.0 mg/L with the CS concentration of 1.0 mg/L, by orthogonal coagulation experiments. Combining Ala/Alb/Alc with CS resulted in larger flocs, higher recovery, and higher fractal dimension values corresponding to denser flocs; in particular, the floc size at the steady state stage was four times larger than that obtained with Al species coagulants alone. The results of ultrafiltration experiments indicated that the external fouling percentage was significantly higher than that of internal fouling, at around 85% and 15%, respectively. In addition, the total membrane resistance was significantly decreased due to CS addition.  相似文献   

10.
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a “dynamic protection layer”, as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.  相似文献   

11.
Exponential relationship was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well.  相似文献   

12.
The membrane fouling caused by extracellular organic matter (EOM) and algal cells and organic matter removal of two typical cyanobacteria (M. aeruginosa and Pseudoanabaena sp.) during ultrafiltration (UF) process were studied in this work. The results showed that EOM had a broad molecular weight (Mw) distribution and the irreversible membrane fouling was basically caused by EOM. Moreover, humic acid and microbial metabolites were major components of EOM of two typical cyanobacteria. Since EOM could fill the voids of cake layers formed by the algal cells, EOM and algal cells played synergistic roles in membrane fouling. Fourier transform infrared spectroscopy analysis indicated that the CH2 and CH3 chemical bonds may play an important role in membrane fouling caused by EOM. Interestingly, the cake layer formed by the algal cells could trap the organic matter produced by algae and alleviate some irreversible membrane fouling. The results also showed that although the cake layer formed by the algal cells cause severe permeate flux decline, it could play a double interception role with UF membrane and increase organic matter removal efficiency. Therefore, when using UF to treat algae-laden water, the balance of membrane fouling and organic matter removal should be considered to meet the needs of practical applications.  相似文献   

13.
Experimental and theoretical analysis were made on the natural humic acid removal and the membrane fouling of ultrafiltration (UF) with in-line coagulation. The results showed dissolved organic carbon (DOC) and UV254 removals by the UF with in-line coagulation at pH 7 were increased from 28% to 53% and 40% to 78% in comparison with direct UF treatment respectively. At the same time, the analysis of high performance liquid chromatography showed that UF with coagulation had significant improvement of removal of humic acid with molecular weights less than 6000 Da in particular. Compared to direct UF, the in-line coagulation UF also kept more constant permeate flux and very slight increase oftransmembrane pressure during a filtration circle. Two typical membrane fouling models were used by inducing two coefficients Kc and Kp corresponding to cake filtration model and pore narrowing model respectively. It was found that membrane fouling by pore-narrowing effect was effectively alleviated and that by cake-filtration was much decreased by in-line coagulation. Under the condition of coagulation prior to ultrafiltration at pH 7, the cake layer formed on the membrane surface became thicker, but the membrane filtration resistance was lower than that at pH 5 with the extension of operation time.  相似文献   

14.
超滤的预处理工艺对比研究:化学混凝与电絮凝   总被引:5,自引:5,他引:0  
赵凯  杨春风  孙境求  李静  胡承志 《环境科学》2016,37(12):4706-4711
对比研究了化学混凝(chemical coagulation,CC)与电絮凝(electrocoagulation,EC)作为超滤膜分离的预处理工艺,在死端过滤条件下与超滤膜的作用机制以及对膜污染的减缓效果.主要研究了Al3+投加量对膜通量、絮体性质(粒径、强度系数、恢复系数、分形维数)、以及滤饼层性质的影响.结果表明,EC作为预处理时,生成的絮体强度大且结构紧实,在膜表面堆积形成的滤饼层具有疏松多孔、亲水性强的性质;而CC作为预处理时,生成的絮体强度低且比较松散,在膜过滤过程中容易被压力压碎压实,导致滤饼层比较密实、亲水性低.因此,EC作为预处理工艺对膜污染的减缓效果好,在运行过程中可以保持较高的膜通量,膜通量较CC高约5.57%.  相似文献   

15.
微絮凝对腐殖酸超滤过程膜污染的减缓特性   总被引:1,自引:1,他引:0  
以硫酸铝[Al_2(SO_4)_3·18H_2O]为絮凝剂,腐殖酸(humic acid,HA)和高岭土(Kaolin)水溶液为原水,研究微絮凝过程产生的不同絮体形态,对自制聚偏氟乙烯(PVDF)超滤膜过滤过程的影响.主要考察了微絮凝过程中絮体的特性(粒径大小及分布,分形维数)以及不同条件下形成的絮体形态对膜通量的影响,利用扫描电镜(SEM)和原子力显微镜(AFM)对污染膜的表面形貌进行表征,并测定了PVDF膜与有机污染物之间黏附力大小,来解析不同絮体形态对超滤膜的膜污染影响机制.结果表明,Al~(3+)以电性中和作用水解去除有机物,随着絮凝剂投加量的增加,絮体粒径不断增大,絮体的分形维数减小.膜通量衰减速率与絮体的粒径呈负相关,絮体粒径越大,膜通量衰减速率越小,超滤过程中形成的滤饼层越疏松,同时,较小分形维数的絮体引起的膜污染较轻,其膜通量恢复率也较高.PVDF-有机污染物之间的相互作用力大小与运行初期相应污染膜通量衰减速率呈正相关.当Al~(3+)投加量为5 mg·L~(-1),初始pH=7时,HA去除率为96.7%,膜通量衰减最小,通量恢复率达到88%.  相似文献   

16.
微塑料是一种存在于不同环境介质中的新兴污染物,主要来源于废弃塑料制品,其存在污染范围广、潜在环境污染大的问题.废塑料再生企业生产废水中微塑料浓度远高于其他类型废水,对其生产废水中的微塑料进行处理具有重要的环境意义.模拟废塑料再生过程的生产废水并进行微塑料去除的絮凝沉淀试验,研究絮凝剂投加量、pH、水力快速搅拌条件的单因素和正交试验对废水中微塑料去除率及其各因素作用的影响.结果表明:①当PAC (聚合氯化铝)投加量为10 mL,PAM (聚丙烯酰胺)投加量为7 mL,pH为9,水力快速搅拌条件为100 r/min下维持40 s再200 r/min下维持40 s时,微塑料的总去除率最高,达91%.②PAC投加量是影响微塑料去除效果的主要因素,其次是pH.③微塑料的去除率与其本身的密度有关,密度大的ABS (acrylonitrile butadiene styrene,丙烯腈-丁二烯-苯乙烯)去除率最高,密度小的PE (polyethylene,聚乙烯)去除率最低.④不同粒径区间的微塑料去除率区别较大,粒径小(0.1~0.25 mm)的微塑料去除效果最好.研究显示,通过控制PAC和PAM的投加量、pH和水力搅拌速率等条件,能够有效将废水中的微塑料通过絮凝沉淀的方法去除,从而达到净化含微塑料生产废水的目的.   相似文献   

17.
A submerged internal circulating membrane coagulation reactor(MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride(PACl) was used as coagulant,and a hydrophilic polyvinylidene fluoride(PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure(TMP), zeta potential(ZP) of the suspended particles in raw water, and KMnO_4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China(GB 5749-2006), as evaluated by turbidity(1 NTU) and total organic carbon(TOC)(5 mg/L)measurements. Besides water flux, the removal of turbidity, TOC and dissolved organic carbon(DOC) in the raw water also increased with increasing TMP in the range of 0.01–0.05 MPa. High ZP induced by PACl, such as 5–9 mV, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity.However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1–2 mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO_4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes.  相似文献   

18.
19.
Coupling coagulation and applied electric field is an efficient method to regulate cake layer porosity and hydrophilicity for alleviating ultrafiltration membrane (UF) fouling. However, the Al/Fe flocs aggregation behavior are induced from electric field and determine the cake layer structure, which has not been studied comparatively yet. Herein, the anti-fouling performance in an efficient electro-coagulation membrane reactor (ECMR, in which UF membrane modules are placed between electrodes) was investigated with Al/Fe anode and various electrochemical parameters from the viewpoint of regulating flocs aggregation. Both the cake layers formed from Al and Fe flocs under an electric field were more porous and hydrophilic in comparison with that formed without electric fields, resulting in an enhanced water flux under higher electric field strength. Comparing with Fe flocs, Al flocs had a faster growth rate and larger size, facilitating membrane pore block resistant, which was more pronounced in a higher current density. Furthermore, the cake layer formed from Al flocs was more porous than that formed from Fe flocs. Therefore, the anti-fouling performance of ECMR with Al anode was superior to that of ECMR with Fe anode. When the electric field strength increased from 0 to 10?V/cm, the normalized specific flux was improved from 71.2% to 89.4% for ECMR (Al) and from 48.1% to 70.1% for ECMR (Fe) at 30?min.  相似文献   

20.
为提高超滤膜系统对污水处理厂二级出水中有机物和TN的去除效果,并降低超滤膜污染速率,改善超滤膜性能,分析了沸石粉、硅藻土2种预涂膜工艺在超滤膜系统中的应用效果. 结果表明:沸石粉/超滤工艺对超滤膜系统的膜通量恢复良好,反冲洗后能恢复到原来的膜通量;而硅藻土/超滤工艺中膜通量较初期下降0.01 L/(m2·h),对照组下降0.04 L/(m2·h). 沸石粉/超滤工艺对污水处理厂二级出水中CODCr、UV254和TN的去除率分别为17.5%、13.5%和11.7%,相比对照组均有较大程度提高. 通过电镜扫描分析发现,沸石粉能够在超滤膜表面有效形成一层保护膜,降低有机物在膜表面的沉积,保障膜系统的高效率及长期稳定运行. 通过比较各实际运行工况效果并进行筛选,确定沸石粉为预涂膜工艺的最佳材料.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号