首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aqueous foam template without any solvent and only using the particles stabilizer has attracted much attention for preparation of the porous adsorbents. Herein, a novel porous adsorbent was fabricated via thermal-initiated polymerization of Pickering aqueous foams, which was stabilized by the natural sepiolite (Sep) and pine pollen, and utilized for the removal of antibiotic from aqueous solution. The stabilizing mechanism of Pickering aqueous foam of that the Sep was modified with the leaching substance from pine pollen and arranged orderly around the bubble to form a dense “shell” structure was revealed. The adsorbents possessed the hierarchical porous structure and excellent adsorption performance for antibiotic of chlorotetracycline hydrochloride (CTC) and tetracycline hydrochloride (TC). The equilibrium adsorption capacities of CTC and TC were achieved with 465.59 and 330.59 mg/g within 60 min at 25°C, respectively. The adsorption process obeyed Langmuir model and pseudo-second-order adsorption kinetic model. This work provided eco-friendly approach for fabricate porous adsorbents for wastewater treatment.  相似文献   

2.
A novel polycyclodextrin-modified magnetic cationic hydrogel (PCD-MCH) was developed and its performance, kinetics and mechanism for the removal of reactive brilliant red X-3B (X-3B) were studied. The results showed that the zeta-potential of PCD-MCH was 32.8 to 16.7 mV at pH 3.0–10.5. The maximum X-3B adsorption capacity of PCD-MCH was 2792.3 mg/g. The adsorption kinetics could be well-described by the Weber–Morris model and the homogeneous surface diffusion model (HSDM). Diffusion stages corresponding to surface or film diffusion, intra-particle or wide mesopore diffusion, and narrow mesopore/micropore diffusion occurred at 0–120, 120–480 and 480–1200 min, respectively. The latter two diffusion stages were rate-controlling for X-3B adsorption kinetics. At the initial X-3B concentration of 600 mg/L, the diffusion coefficient (Ds) and external mass transfer coefficient in the liquid phase (kF) were 3 × 10?11 cm2/min and 4.68 × 10?6 cm/min, respectively. X-3B approaching the center of PCD-MCH particles could be observed at 360 min. At the end of the third diffusion stage, the Cp at q/qe = 0 was 45.20 mg/L, which was close to the homogeneous Cp value of 46 mg/L along the radius of PCD-MCH particles. At pH 3.0–10.0, PCD-MCH showed stable X-3B adsorption capacities. After five regeneration-reuse cycles, the residual adsorption capacity of regenerated PCD-MCH was higher than 892.7 mg/g. The corresponding adsorption mechanism was identified as involving electrostatic interactions, cyclodextrin cavities and hydrogen bonds, of which cyclodextrin cavities showed prominent capture performance towards dye molecules through the formation of inclusion complexes.  相似文献   

3.
A series of novel adsorbents composed of cellulose (CL) with Ca/Al layered double hydroxide (CCxA; where x represent the Ca/Al molar ratio) were prepared for the adsorption of antimony (Sb(V)) and fluoride (F?) ions from aqueous solutions. The CCxA was characterized by Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), elemental analysis (CHNS/O), thermogravimetric analysis (TGA-DTA), zeta potential, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) analysis. The effects of varying parameters such as dose, pH, contact time, temperature and initial concentration on the adsorption process were investigated. According to the obtained results, the adsorption processes were described by a pseudo-second-order kinetic model. Langmuir adsorption isotherm model provided the best fit for the experimental data and was used to describe isotherm constants. The maximum adsorption capacity was found to be 77.2 and 63.1 mg/g for Sb(V) and F?, respectively by CC3A (experimental conditions: pH 5.5, time 60 min, dose 15 mg/10 mL, temperature 298 K). The CC3A nanocomposite was able to reduce the Sb(V) and F? ions concentration in synthetic solution to lower than 6 μg/L and 1.5 mg/L, respectively, which are maximum contaminant levels of these elements in drinking water according to WHO guidelines.  相似文献   

4.
Local fluoride contamination and bacterial infections in potable water have dangerous effects on the human body and are today a global concern. In this study, we have synthesized a pH-responsive bifunctional biopolymer nanocomposite (HAZ) of humic acid with incorporating aluminum zirconium bimetallic oxide by deep freeze–drying method. Fast nucleation and interconnection of nanoparticles form a highly porous network because of sublimation of frozen HAZ. This duo nanocomposite has efficiently worked for fluoride removal and showed potent antibacterial activity against the Escherichia coli Gram-negative and Staphylococcus aureus Gram-positive bacteria. The X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the hydroxyl groups act as a pivot in the ion exchange process of adsorption, each element of bimetallic oxide primarily takes part in the adsorption mechanism. The maximum adsorption capacity of the adsorbent was 180.62 mg/g at pH seven. Thermodynamic parameters like Gibbs free energy change (ΔG0), entropy (ΔS0), and enthalpy (ΔH0) indicate that the process was endothermic, feasible, and taken place by a chemisorption mechanism. This is the first novel freeze–dried bifunctional biopolymer nanocomposite composed of humic acid natural polymer incorporated with Al–Zr metal oxide, and it exhibited three times higher adsorption efficacy with excellent antibacterial action at a concentration of 5 µg/mL of the nanocomposite.  相似文献   

5.
In this work, zinc ferrite spinel with different zinc contents (ZnxFe3-xO4) was synthesized by a hydrothermal method and used for removing As(V) in aqueous solution. X-ray diffraction (XRD) results indicated that in the crystal structure of ZnxFe3-xO4, the zinc atoms tended to occupy the octahedral sites for x?<?0.6 and diffused into the tetrahedral sites gradually with x?>?0.6. The size of ZnxFe3-xO4 crystallites increased with the increasing zinc content. Batch adsorption experiments showed that the adsorption isotherms could be well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second-order kinetic model. Zinc ferrite exhibited the highest adsorption capacity towards As(V) when x?=?0.6. Study of the mechanism indicated that doping with zinc increased the number of surface hydroxyl groups on ferrite spinel, and thus enhanced the adsorption capacity when x?=?0.6. This work revealed the effects of doping site and content of metal atoms on the adsorption ability of ferrite spinel towards As(V).  相似文献   

6.
In this work, we employed waste activated sludge (WAS) as carbon source to prepare ultrahigh specific surface area (SSA) biopolymers-based carbons (BBCs) through alkali (KOH) treatment coupled to pyrolysis strategy. Before the pyrolysis process, the involvement of KOH made a great recovery of soluble biopolymers from WAS, resulting in highly-efficient catalytic pyrolysis. The Brunner-Emmett-Teller and pore volume of BBCs prepared at 800°C (BBC800) reached the maximum at 2633.89 m2·g?1 and 2.919 m3·g?1, respectively. X-ray photoelectron spectroscopy suggested that aromatic carbon in the form of C=C was the dominant fraction of C element in BBCs. The N element in BBCs were composed of pyrrolic nitrogen and pyridinic nitrogen at 700°C, while a new graphitic nitrogen appeared over 800°C. As a refractory pollutant of wastewater treatment plants, tetracycline (TC) was selected to evaluate adsorption performance of BBCs. The adsorption behavior of BBCs towards TC was conformed to the pseudo-second-order kinetic and the Langmuir models, signifying that chemisorption of monolayers was dominant in TC adsorption. The adsorption capacity of BBC800 reached the maximum at 877.19 mg·g?1 for 90 min at 298 K. Thermodynamic analysis indicated that the adsorption process was endothermic and spontaneous. Hydrogen bonding and π-π stacking interaction were mainly responsible for TC adsorption, and interfacial diffusion was the main rate-control step in adsorption process. The presence of soluble microbial products (SMPs) enhanced TC removal. This work provided a novel strategy to prepare bio-carbon with ultrahigh SSA using WAS for highly-efficient removal of organic pollutants.  相似文献   

7.
Triphenylmethane (tpm) derivatives (e.g. tpmCV) have threatened the safety of the aquatic environment due to the potential toxicity and carcinogenicity. In this study, the novel ultrasonic/persulfate/chlorite (US/S2O82−/ClO2) oxidation process was developed for the effective removal of tpmCV in wastewater. The apparent non-integer kinetics (n around 1.20) of tpmCV degradation under different factors (R2Adj > 0.990) were investigated, respectively. Inhibiting effects of anions were greater than those of cations (except Fe(II/III)). The adding of micromolecule organic acids could regulate degradation towards positive direction. The double response surface methodology (RSM) was designed to optimize tpmCV removal process, and the acoustic-piezoelectric interaction was simulated to determine the propagation process of acoustic wave in the reactor. The possible degradation pathway was explored to mainly include carbonylation, carboxylation, and demethylation. The estimated effective-mean temperature at the bubble-water interface was calculated from 721 to 566 K after introducing the ClO2, however, the adsorption or partitioning capacity of tpmCV in the reactive zone was widened from 0.0218 to 0.0982. The proposed co-catalysis of US/S2O82−/ClO2 was based on the determined active species mainly including ClO2, SO4, and OH. Compared with other US-based processes, the operating cost (3.97 $/m3) of US/S2O82−/ClO2 with the EE/O value (16.8 kWh/m3) was relatively reduced.  相似文献   

8.
Chloroacetamide herbicides, namely acetochlor and metolachlor, are common herbicides used on corn and soybean fields. Dichloroacetamide safeners, namely benoxacor and furilazole, are commonly used in formulations containing chloroacetamide herbicides. Extensive reports on adsorption of chloroacetamide herbicides are available, yet little information exists regarding adsorption potential of co-applied safeners. Herein, the adsorption and desorption characteristics of selected herbicide safeners to granular activated carbon (GAC) and in agricultural soils are reported. Further, soil column studies were performed to understand the leaching behaviour of the herbicide Dual II Magnum. Equilibrium sorption experiments of safeners to three agricultural soils and one GAC showed that adsorption was best fitted by the Freundlich isotherm. The Freundlich adsorption constant, Kf, for benoxacor and furilazole sorption onto three agricultural soils ranged from 0.1 to 0.27 and 0.1 to 0.13 (mg/g) × (mg/L)?(1/n), respectively. The Kf for benoxacor and furilazole to GAC was 6.4 and 3.4 (mg/g) × (mg/L)?(1/n), respectively, suggesting more favorable sorption of benoxacor to GAC than furilazole to GAC. The sorption to soils was reversible as almost 40%–90% of both safeners was desorbed from three soils. These results were validated in four replicated soil column studies, where S-metolachlor was shown to leach similarly to the safener benoxacor, originating from the herbicide formulation. The leaching of S-metolachlor and benoxacor was influenced by soil texture. Cumulatively, these results show that safeners will move through the environment to surface waters similarly to the active ingredients in herbicides, but may be removed during drinking water treatment via GAC.  相似文献   

9.
Various manganese oxides (MnOx) prepared via citric acid solution combustion synthesis were applied for catalytic oxidation of benzene. The results showed the ratios of citric acid/manganese nitrate in synthesizing process positively affected the physicochemical properties of MnOx, e.g., BET (Brunauer-Emmett-Teller) surface area, porous structure, reducibility and so on, which were in close relationship with their catalytic performance. Of all the catalysts, the sample prepared at a citric acid/manganese nitrate ratio of 2:1 (C2M1) displayed the best catalytic activity with T90 (the temperature when 90% of benzene was catalytically oxidized) of 212℃. Further investigation showed that C2M1 was Mn2O3 with abundant nano-pores, the largest surface area and the proper ratio of surface Mn4+/Mn3+, resulting in preferable low-temperature reducibility and abundant surface active adsorbed oxygen species. The analysis results of the in-situ Fourier transform infrared spectroscopy (in-situ FTIR) revealed that the benzene was successively oxidized to phenolate, o-benzoquinone, small molecules (such as maleates, acetates, and vinyl), and finally transformed to CO2 and H2O.  相似文献   

10.
To improve the removal capacity of NO + O2 effectively, the alkaline earth metal-doped order mesoporous carbon (A-C-FDU-15(0.001) (A = Mg, Ca, Sr and Ba)) and Mg-C-FDU-15(x) (x = 0.001?0.003) samples were prepared, and their physicochemical and NO + O2 adsorption properties were determined by means of various techniques. The results show that the sequence in (NO + O2) adsorption performance was as follows: Mg-C-FDU-15(0.001) (93.2 mg/g) > Ca-C-FDU-15(0.001) (82.2 mg/g) > Sr-C-FDU-15(0.001) (76.1 mg/g) > Ba-C-FDU-15(0.001) (72.9 mg/g) > C-FDU-15 (67.1 mg/g). Among all of the A-C-FDU-15(0.001) samples, Mg-C-FDU-15(0.001) possessed the highest (NO + O2) adsorption capacity (106.2 mg/g). The species of alkaline earth metals and basic sites were important factors determining the adsorption of NO + O2 on the A-C-FDU-15(x) samples, and (NO + O2) adsorption on the samples was mainly chemical adsorption. Combined with the results of (NO + O2)-temperature-programmed desorption ((NO + O2)-TPD) and in situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization, we deduced that there were two main pathways of (NO + O2) adsorption: one was first the conversion of NO and O2 to NO2 and then part of NO2 was converted to NO2? and NO3?; and the other was the direct oxidation of NO to NO2? and NO3?.  相似文献   

11.
In this work, we proposed a green and cost-effective method to prepare a graphene-based hyper-cross-linked porous carbon composite (GN/HCPC) by one-pot carbonization of hyper-cross-linked polymer (HCP) and glucose. The composite combined the advantages of graphene (GN) and hyper-cross-linked porous carbon (HCPC), leading to high specific surface area (396.93 m2/g) and large total pore volume (0.413 cm3/g). The resulting GN/HCPC composite was applied as an adsorbent to remove 2,4-dichlorophenol (2,4-DCP) from aqueous solutions. The influence of different solution conditions including pH, ionic strength, contact time, system temperature and concentration of humic acid was determined. The maximum adsorption capacity of GN/HCPC composite (calculated by the Langmuir model) could reach 348.43 mg/g, which represented increases of 43.6% and 13.6% over those of the as-prepared pure GN and HCPC, respectively. The Langmuir model and pseudo-second-order kinetic model were found to fit well with the adsorption process. Thermodynamic experiments suggested that the adsorption proceeded spontaneously and endothermically. In addition, the GN/HCPC composite showed high adsorption performance toward other organic contaminants including tetracycline, bisphenol A and phenol. Measurement of the adsorption capability of GN/HCPC in secondary effluent revealed a slight decrease over that in pure water solution. This study demonstrated that the GN/HCPC composite can be utilized as a practical and efficient adsorbent for the removal of organic contaminants in wastewater.  相似文献   

12.
A molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-dichlorophenoxyacetic acid(2,4-D) was prepared by a surface imprinting technique in combination with a sol-gel process.The 2,4-D-imprinted amino-functionalized silica sorbent was characterized by FT-IR,nitrogen adsorption and static adsorption experiments.The selectivity of the sorbent was investigated by a batch competitive binding experiment using an aqueous 2,4-D and 2,4-dichlorophenol(2,4-DCP) mixture or using an aqueous 2...  相似文献   

13.
ZVI/EDDS/Air体系降解水中2,4-二氯酚的研究   总被引:2,自引:2,他引:0  
建立零价铁(ZVI)、乙二胺二琥珀酸(EDDS)和曝气三者组成的类Fenton(ZVI/EDDS/Air)处理体系,考察了初始EDDS浓度、铁粉投加量、曝气速率、2,4-二氯酚(2,4-DCP)浓度、初始pH以及反应温度等对水溶液中2,4-DCP降解的影响.结果表明,该体系能有效降解2,4-DCP,并且其降解规律符合准一级动力学方程.在2,4-DCP质量浓度100 mg·L-1、EDDS浓度0.80 mmol.L-1、铁粉投加量20 g·L-1、曝气速率为2 L.(min.L)-1的最佳实验条件下室温反应1 h,2,4-DCP的降解率达到99%.ZVI/EDDS/Air体系对氯酚的降解较ZVI/EDTA/Air体系具有环境友好、反应条件温和,而且对2,4-DCP的降解效果好等优点.  相似文献   

14.
Electrochemical degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous solution was investigated over Ti/SnO2-Sb anode. The factors influencing the degradation rate, such as applied current density (2-40 mA/cm2), pH (3-11) and initial concentration (5-200 mg/L) were evaluated. The degradation of 2,4-DCP followed apparent pseudo first-order kinetics. The degradation ratio on Ti/SnO2-Sb anode attained > 99.9% after 20 min of electrolysis at initial 5-200 mg/L concentrations at a constant current density of 30 mA/cm2 with a 10 mmol/L sodium sulphate (Na2SO4) supporting electrolyte solution. The results showed that 2,4-DCP (100 mg/L) degradation and total organic carbon (TOC) removal ratio achieved 99.9% and 92.8%, respectively, at the optimal conditions after 30 min electrolysis. Under this condition, the degradation rate constant (k) and the degradation half-life (t1/2) were 0.21 min-1 and (2.8±0.2) min, respectively. Mainly carboxylic acids (propanoic acid, maleic acid, propanedioic acid, acetic acid and oxalic acid) were detected as intermediates. The energy efficiencies for 2,4-DCP degradation (5-200 mg/L) with Ti/SnO2-Sb anode ranged from 0.672 to 1.602 g/kWh. The Ti/SnO2-Sb anode with a high activity to rapid organic oxidation could be employed to degrade chlorophenols, particularly 2,4-DCP in wastewater.  相似文献   

15.
研究了UV/H2O2工艺对2,4-二氯酚(2,4-DCP)的去除效果和水中阴离子、腐殖酸对该工艺降解2,4-DCP的影响。结果表明:UV/H2O2工艺可以有效的去除水中2,4-DCP,光降解过程符合一级反应动力学模型;在H2O2投加量为8mg/L,1个30W低压汞灯照射下,2,4-DCP在蒸馏水和自来水中光降解速率常数分别为0.0232/min和0.0162/min;NO3-、Cl-、HCO3-对2,4-DCP光降解有抑制作用;当3种离子浓度为0.5mmol/L、10mmol/L、20mmol/L时,对2,4-DCP光降解的抑制程度为HCO3->NO3->Cl-;随着离子浓度增大,抑制作用增强;自来水中的光降解速率常数低于蒸馏水中的光降解速率常数是由于水中多种离子影响的结果;腐殖酸在低浓度时,促进光降解反应的进行,在高浓度时,2,4-DCP的光降解氧化受到抑制。  相似文献   

16.
孔殿超  周跃飞  陈天虎  王进  李碧 《环境科学》2017,38(7):2875-2882
2,4-二氯苯酚(2,4-dichlorophenol,2,4-DCP)常用于农药生产,在水体和土壤中广泛分布,具有难降解、高毒性的特点.通过模拟自然过程,在厌氧反应体系中投加铁氧化物和硫酸盐矿物,重点考察了不同矿物对2,4-DCP降解的影响.结果发现,厌氧体系中针铁矿、磁铁矿和石膏对2,4-DCP均没有明显的吸附作用;质量衡算结果表明所有反应体系中仅发生2,4-DCP向4-氯苯酚(4-chlorophenol,4-CP)的转化;与无外加碳源组相比,乙酸钠的加入使得2,4-DCP的还原脱氯反应速率增大一倍.分析表明针铁矿和磁铁矿加入可刺激脱氯功能菌的生长或活性,进而提高微生物的电子传递能力和2,4-DCP的降解速率;石膏加入强烈抑制脱氯功能菌的生长或活性,进而抑制2,4-DCP的降解.研究结果对认识难生化降解卤代酚在厌氧环境中的迁移转化及环境工程中此类物质的处理具有潜在意义.  相似文献   

17.
张文  陈玲  计军平  夏四清 《环境科学》2007,28(6):1252-1257
利用邻氯酚 (2-CP)和对氯酚 (4-MCP)的模拟废水驯化厌氧颗粒污泥并考察驯化的污泥对2,4-二氯酚 (2,4-DCP)的降解性.通过摇瓶试验和运行连续流反应器研究了将2种单氯酚驯化过的污泥混合后对混合单氯酚以及2,4-DCP的降解特性,并比较了驯化与未驯化的污泥降解2,4-DCP过程的差异.驯化与未驯化的污泥分别在50 h和180 h左右将2,4-DCP降解完全,表明混合单氯酚驯化的厌氧颗粒污泥降解2,4-DCP 比未驯化的厌氧颗粒污泥快.虽然2种污泥降解过程都出现了4-MCP积累现象,但驯化的污泥可以逐渐降解4-MCP,未驯化的污泥则无法降解.因此,混合单氯酚驯化的污泥可以强化邻、对位脱氯功能,并且提高污泥对2,4-DCP的降解性.连续流厌氧颗粒污泥-悬浮载体反应器的运行结果表明,接种混合单氯酚驯化的厌氧污泥能够同时降解2种单氯酚,可缩短启动时间,并提高了降解二氯酚效率.2-CP的去除率一直维持在80%左右,4-MCP随着进水浓度变化去除率在30%~80%波动.  相似文献   

18.
采用生物强化技术降解废水中的难降解有机物 2 ,4 二氯酚 (简称 2 ,4 DCP) ,研究了不同浓度的 4 氯酚 (简称 4 MCP)存在对 2 ,4 DCP降解的影响 ,并通过半连续流实验研究了 4 MCP长期存在下 ,强化系统中 2 ,4 DCP和 4 MCP降解速率的变化趋势 .结果表明 ,第 1次半连续流实验中 ,4 MCP浓度为 5、10、2 0及 30mg L时 ,都会对强化系统中 2 ,4 DCP的降解速率产生一定的抑制作用 ,而且抑制作用随着 4 MCP浓度的增加而增强 .随着半连续流实验次数的增加 ,4 MCP对 2 ,4 DCP降解的抑制作用减弱甚至消失 ,共基质时 2 ,4 DCP的降解速率反而比其单基质半连续流运行时快 .4 MCP与 2 ,4 DCP共基质存在时 ,2 ,4 DCP优先被微生物利用 ,此后 4 MCP才被降解 ,表现出两阶段降解的现象 .  相似文献   

19.
纳米Pd/Fe双金属对2,4-二氯酚的脱氯机理及动力学   总被引:15,自引:1,他引:15  
采用纳米Pd Fe双金属对2,4 二氯酚(2,4 DCP)进行了催化还原脱氯处理.结果表明,纳米Pd Fe双金属具有较高的比表面积和反应活性,对2,4 DCP具有较好的脱氯效率.当纳米Pd Fe用量在6g·L-1时,2,4 DCP脱氯率达到90%以上;脱氯效率与pH值、温度、钯化率、Pd Fe投加量等因素有关.2,4 DCP在脱氯过程中先生成邻氯酚和对氯酚,而后继续脱氯生成苯酚,或由2,4 DCP直接降解成苯酚.2,4 DCP降解符合拟一级反应动力学.2,4 DCP催化还原脱氯反应的活化能为139 7kJ·mol-1.  相似文献   

20.
重金属和氯酚对霍甫水丝蚓的急性毒性及水环境安全评价   总被引:2,自引:0,他引:2  
研究了Hg2+、Cr6+和Pb2+等重金属及2,4-二氯酚、2,4,6-三氯酚和五氯酚等氯酚类物质对霍甫水丝蚓(Limnodrilus hoffmeisteri)的急性毒性效应.结果表明, Hg2+、Cr6+和Pb2+对霍甫水丝蚓的96h-LC50分别为0.16,4.25,76.24mg/L;2,4-二氯酚、2,4,6-三氯酚和五氯酚对霍甫水丝蚓的96h-LC50分别为20.73,7.86,2.42mg/L. 根据6种污染物对霍甫水丝蚓的毒性实验结果,预测水体中Hg2+、Cr6+和Pb2+对霍甫水丝蚓的安全浓度SC分别为16,425,7624μg/L,最大允许浓度分别为1.6,42.5,762.4μg/L;2,4-二氯酚、2,4,6-三氯酚和五氯酚对霍甫水丝蚓的安全浓度SC分别为2073,786,242μg/L,最大允许浓度MPC分别为207.3,78.6,24.2μg/L.6种污染物的毒性评估结果显示,Hg2+对霍甫水丝蚓表现为极高毒性,Cr6+、2,4,6-三氯酚和五氯酚对其表现为高等毒性,Pb2+和2,4-二氯酚表现为中等毒性.3种重金属对其毒性顺序为:Hg2+ > Cr6+ > Pb2+;3种氯酚类物质对其毒性大小依次为:五氯酚 > 2,4,6-三氯酚 > 2,4-二氯酚.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号