首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
谢元博  李巍 《环境科学学报》2013,33(6):1763-1770
保护居民健康是北京市能源系统优化管理和大气污染治理的重要目标.本研究基于北京市的社会经济发展目标并结合相关节能减排和环保要求,针对全市2010-2020年间的能源消费分别设计了高、中、低3种约束情景,通过LEAP模型预测了全市至2020年的能源消费量与S02、NOx、PM10和PM2.5等4种主要大气污染物的排放强度,并采用泊松回归模型对3种情景下主城区居民受环境空气中这4种大气污染物的暴露危害所导致的健康风险进行了评估.结果显示:相对低约束情景,高约束情景至2020年可避免与S02、NOx、PM10和PM2.5污染相关的死亡危害分别为2663、6359、4720和4104人·a-1,而且在高约束情景下煤炭消费比重每下降1%,可相应地避免约1400人·a-1的污染急性死亡.由此建议北京市实施更加严格的节能和减排措施,严控煤炭消费总量,进一步优化能源结构,最大程度地降低能源消费导致的大气污染所产生的居民健康风险.  相似文献   

2.
高效水解酸化UASB活性污泥的菌群结构分析   总被引:4,自引:1,他引:4  
王学华  黄俊  宋吟玲  黄勇  李蕾 《环境科学学报》2014,34(11):2779-2784
采用454高通量测序技术对低能耗、低污泥产量且具有脱氮效能的印染废水处理工艺中UASB污泥的微生物菌群结构进行了分析.结果表明,UASB内污泥的微生物菌种呈多样性分布且优势菌群突出,通过菌群鉴定发现,脱硫橄榄样菌属(Desulfobacula)、Levilinea、长绳菌属(Longilinea)、Candidatus Tammella、Paludibacter、索氏菌属(Thauera)、Tepidimicrobium、杆状脱硫菌属(Desulforhabdus)、类芽孢杆菌属(Paenibacillus)、梭菌属(Clostridium)是主要的优势菌属.其中,梭菌属是起到产酸和污泥减量作用的主要菌种.另外,具有脱氮效能的原因可能是由于发生了硫酸盐型厌氧氨氧化作用.通过Shannon、Chao、Simpson、Shannon指数的计算,发现该UASB中微生物较其他废水处理系统,群落结构拥有较高的多样性和丰度,有利于稳定产酸.  相似文献   

3.
In the Kimchi (a salt-pickled and fermented food) manufacturing industry, the process of brining and rinsing the raw vegetable produces a vast amount of wastewater of high salinity. Instead of the expensive and low-efficient conventional treatment system, a brining wastewater reuse system was developed using hybrid chemical precipitation/microfiltration. In the microfiltration of chemically treated brining wastewater, a comparison of flux, backwashing frequency and energy consumption was made between dead-end and crossflow filtration modes. The optimum location of the neutralization step in this system was also discussed in connection with the microfiltration performance. The quality test of Kimchi prepared by the reuse system confirmed the new approach to the cleaner production option was successful in terms of water/raw material (salt) savings and wastewater reduction.  相似文献   

4.
The aim of this research was to determine the influence of laundering procedures on the ecological parameters of wastewater and the electric energy consumption. Laundering procedures were simulated in a laboratory washing machine and the parameters temperature, duration and concentration of disinfection agents were varied until the optimal conditions were found for low-temperature laundering while achieving an appropriate disinfection effect with peroxyacetic acid and minimal damages to the textiles. The disinfection effect was determined using standard bioindicators Enterococcus faecium, Staphylococcus aureus, Enterobacter aerogenes and Candida albicans. The optimal low-temperature laundering procedure at 40 °C was then evaluated according to the Slovenian regulations for wastewater reuse and the toxicity of the wastewater on activated sludge as well as the wastewater biodegradability were determined. It was found that an optimal low-temperature laundering procedure at 40 °C decreased the energy consumption while reaching an adequate disinfection effect with somewhat higher dosages of chemicals and with lower damages to the textiles due to lower washing temperatures. The wastewater was found to have a certain level of pollution and was biodegradable and can therefore be treated using biological treatment.  相似文献   

5.
结合企业清洁生产理论,根据污水处理厂实际情况,从“节能、降耗、减排、增效”出发,详细阐述了污水厂实行清洁生产的途径。指出节约电能、新鲜水、药剂,减少污染物排放是污水处理厂清洁生产的主要出发点。并进行实例分析。  相似文献   

6.
大型再生水厂不同污水处理工艺的能耗比较与节能途径   总被引:5,自引:3,他引:2  
能耗是再生水厂运行主要的考核指标.采用比能耗分析法、单元能耗分析法以及冗余分析法等探讨了清河再生水厂不同污水处理工艺(倒置A2/O、A2/O和A2/O-MBR)的能耗构成和时空分布特征.重点考察了A2/O-MBR工艺的主要能耗环节和原因,探讨了A2/O-MBR工艺的节能改造方法,并比较了其改造前后的能耗.结果表明,曝气是清河再生水厂污水处理的常规工艺和A2/O-MBR工艺的主要耗能需求,分别占总能耗的42.97%和50.65%.在保证A2/O-MBR工艺出水水质的同时,采用脉冲曝气改造后节能效果明显.改造后的膜运行通量增大约20%,吨水能耗为0.53 k W·h·t-1,降幅达42.39%,去除单位COD能耗为1.29 k W·h·kg-1,降幅达54.74%.该厂A2/O-MBR工艺回流量大,但与出水水质相关性较弱.在一定范围内降低回流比不会造成出水水质恶化,因此可作为进一步节能的方向之一.  相似文献   

7.
In wastewater treatment plants(WWTPs)using the activated sludge process,two methods are widely used to improve aeration efficiency — use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics(such as concentrations of mixed liquor suspended solids(MLSS)and microbial communities)and operating conditions(such as air flow rate and operational dissolved oxygen(DO)concentrations). Moreover,operational DO is closely linked to effluent quality. This study,which is in reference to WWTP discharge class A Chinese standard effluent criteria,determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3 mg/L,and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions,as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model(determined using different air flow rate(Q′_(air))and mixed liquor volatile suspended solids(MLVSS)values),theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however,operating at low DO and low MLVSS could significantly reduce energy consumption. Finally,a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed,which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology.  相似文献   

8.
Biological processes have been widely used for the treatment of both domestic and industrial wastewaters. In such biological processes, pollutants are converted into pollution-free substances by microorganisms through oxidation-reduction reactions. Thus, how to quantify the internal oxidation-reduction properties wastewaters and seek out targeted countermeasures is essential to understand, operate, and optimize biological wastewater treatment systems. So far, no such approach is available yet. In this work, a novel concept of electron neutralization-based evaluation is proposed to describe the internal oxidation-reduction properties of wastewater. Pollutants in wastewater are defined as electron donor substances (EDSs) or electron acceptor substances (EASs), which could give or accept electrons, respectively. With such an electron neutralization concept, several parameters, i.e., electron residual concentration (R), economy-related index (E and Er), and economical evaluation index (Y and Yr), are defined. Then, these parameters are used to evaluate the performance and economic aspects of currently applied wastewater treatment processes and even optimize systems. Three case studies demonstrate that the proposed concept could be effectively used to reduce wastewater treatment costs, assess energy recovery, and evaluate process performance. Therefore, a new, simple, and reliable methodology is established to describe the oxidation-reduction properties of wastewater and assess the biological wastewater treatment processes.  相似文献   

9.
刘吉宝  李亚明  吕鑑  魏源送  杨敏  郁达伟 《环境科学》2015,36(10):3794-3800
污泥脱水是污泥减量的主要手段,直接影响到后续污泥处理处置.本研究以北京某大型污水处理厂A2/O工艺和A2/O-MBR工艺污泥脱水为对象,基于2013年全年的运行数据,分析不同工艺的污泥脱水效果、絮凝剂投配率、污泥脱水电耗和污泥脱水成本,并通过冗余分析(RDA)研究了不同污水处理工艺污泥脱水性能的影响因素.结果表明,污泥脱水性能和絮凝剂投配率均呈现季节性变化特征,冬季污泥较难脱水,絮凝剂消耗大.A2/O-MBR工艺的脱水污泥含水率年均值为(81.92±1.64)%,A2/O工艺为(82.56±1.35)%,污泥脱水絮凝剂消耗(以DS计,下同)分别为(8.70±7.25)kg·t-1和(7.42±2.96)kg·t-1,电耗(以DS计,下同)分别为331.82 k W·h·t-1和121.57 k W·h·t-1.A2/O-MBR工艺的污泥脱水絮凝剂成本(以DS计,下同)为204.76元·t-1,用电成本为231.61元·t-1;A2/O工艺的污泥脱水絮凝剂成本为175.00元·t-1,用电成本为84.86元·t-1.RDA分析表明,水温等季节性因素引起污泥有机质变化是影响污泥脱水性能的关键因素之一,此外,污泥龄也与污泥脱水性能有一定相关性.  相似文献   

10.
The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (− 0.64) as the most important variables. The adjusted coefficient is suitable and equals R2 = 0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号