首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
不同温度桉树叶生物炭对Cd2+的吸附特性及机制   总被引:2,自引:0,他引:2  
通过元素分析、BET-N2、Zeta电位、Boehm滴定,SEM-EDS、FTIR等分析方法对不同热解温度(300、500和700℃)下制备的桉树叶生物炭进行表征,研究了3种生物炭(BC300、BC500和BC700)对Cd2+的吸附特性与机制.结果表明,随温度升高,生物炭产率下降,灰分、pH值和Zeta负电荷量上升,比表面积增大.当Cd2+浓度为20mg/L时,平衡时间依次为80min(BC700)<360min(BC500)<540min(BC300),均符合准二级动力学模型(R2>0.98),以化学吸附为主.BC300和BC500吸附过程均符合Langmuir和Freundlich模型,BC700更符合Freundlich模型,最大吸附量依次为BC700(94.32mg/g) > BC500(67.07mg/g) > BC300(60.38mg/g).在Boehm滴定结果分析的基础上,结合FTIR和SEM-EDS,表明生物炭吸附机制主要为静电吸附和官能团络合作用.BC700吸附性能最佳,原因可能是具有较大的比表面积、较多的负电荷量和较为丰富的官能团.  相似文献   

2.
巫林  刘颖  李燕  沈飞  杨刚  伍钧 《环境科学研究》2016,29(10):1537-1545
为寻求高效、廉价的E2(雌二醇激素)吸附剂及开拓蚯蚓粪便的资源化利用途径,将蚯蚓粪便在300、500和700 ℃下热解碳化制备生物炭(分别记为BC300、BC500和BC700),对所得生物炭的基本理化性质(包括物质组成、表面官能团、孔隙结构等)进行分析,并将其用于吸附水体中E2,考察生物炭投加量、溶液pH、反应时间及初始ρ(E2)对生物炭吸附性能的影响,并探讨了吸附机理.结果表明:随热解温度的升高,生物炭的H/C(原子比)由0.13降至0.03,O/C(原子比)由0.46降至0.02,芳香性增强,极性降低,逐渐由脂肪炭结构过渡到芳香炭结构;生物炭比表面积由24.33 m2/g增至76.29 m2/g,总孔体积由0.09 cm3/g增至0.19 cm3/g.不同热解温度下制备的生物炭对E2的吸附过程均符合准二级动力学方程,拟合系数大于0.991;Langmuir和Freundlich等温吸附模型均能较好地描述蚯蚓粪便生物炭对E2的吸附过程,Langmuir理论最大吸附量表现为BC700(7.66 mg/g)>BC500(5.23 mg/g)>BC300(3.32 mg/g).随热解温度的升高,O/C和H/C降低,说明碳化程度增强,生物炭吸附E2的分配作用减弱而表面吸附作用增强.研究显示,蚯蚓粪便生物炭对E2的吸附效果随比表面积和孔体积的增加而增强.   相似文献   

3.
陈林  平巍  闫彬  吴彦  付川  黄炼旗  刘露  印茂云 《环境工程》2020,38(8):119-124
以城市剩余污泥为原料,于300,400,500,600 ℃温度条件下制备生物炭,通过单因素静态吸附实验探讨制备温度对生物炭吸附Cr(Ⅵ)的影响。结果表明:在500 ℃以内随着温度上升制备的生物炭对Cr(Ⅵ)的吸附量增加,制备温度高于500 ℃后变化不明显;扫描电镜(SEM)、比表面积(BET)、傅里叶红外光谱(FTIR)表征结果显示,热解温度对生物炭表面形貌和官能团组成有显著影响;等温模型及动力学拟合结果表明,生物炭吸附Cr(Ⅵ)为单分子层吸附、物理-化学复合吸附。热解温度对污泥制备生物炭吸附Cr(Ⅵ)的性能有显著影响,最佳制备温度为500 ℃,在此条件制备的生物炭对Cr(Ⅵ)的理论吸附量可达7.93 mg/g。  相似文献   

4.
以传统中药-黄芪废渣为原料,分别在200℃、400℃、500℃、600℃和700℃的厌氧氛围下热解制备生物炭材料(BC200、BC400、BC500、BC600和BC700),并利用BET比表面积分析、FTIR光谱分析、扫描电子显微镜等方法对其进行表征,同时考察不同投加量、吸附时间、初始浓度和pH值下生物炭对磺胺甲基嘧啶的吸附特征.结果表明,随制备温度的升高,生物炭的表面积及吸附性能也显著增加.相比原状黄芪渣(SBET=0.42m2/g),BC700的BET比表面积(SBET=155.69m2/g)增大370倍,对磺胺甲基嘧啶的吸附容量增加185倍.BC700对磺胺甲基嘧啶的等温吸附过程符合Langmuir模型(R2=0.9977),最大吸附容量为11.96mg/g,吸附反应过程满足准二级动力学方程(R2>0.994),且为化学吸附.同时随着溶液初始pH值和投加量的升高,生物炭的吸附容量先增大后减小,最佳吸附pH值为4.  相似文献   

5.
为了解生物炭对水中Cr(Ⅵ)的吸附效果,本文选用蔬菜废物豆角秸秆为原材料,采用限氧升温法在400℃和700℃温度下制备了两种生物炭。并研究了投加量、初始浓度、pH值、吸附时间、温度等因素对生物炭吸附Cr(Ⅵ)的影响。研究结果表明,2种豆角秸秆生物炭对水中Cr(Ⅵ)均有较好的吸附率,吸附最佳条件略有不同;D400对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于40mg·L^-1,pH值2—3;D700对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于60mg·L^-1,pH值2—4;基本达到吸附平衡的时间均为60min;温度对生物炭吸附Cr(Ⅵ)的影响很小。  相似文献   

6.
小麦秸秆对Cr(Ⅵ)的吸附特性及动力学、热力学分析   总被引:8,自引:3,他引:5  
为实现农业废料资源化,解决含铬废水的污染问题,研究了小麦秸秆对Cr(Ⅵ)的吸附性能.试验考察了pH,小麦秸秆投加量,温度和初始ρ〔Cr(Ⅵ)〕对吸附活性的影响,进而确定了小麦秸秆去除Cr(Ⅵ)的最优条件.结果表明:当pH=1.0,温度为50 ℃,固液比为40 g/L时,小麦秸秆对Cr(Ⅵ)的吸附效果最佳.在pH=1.0,温度为30 ℃,固液比为4 g/L的条件下,初始ρ〔Cr(Ⅵ)〕分别为50,100和150 mg/L时,吸附6 h达到平衡,饱和吸附量分别为6.281,11.942 和13.981 mg/g.吸附动力学反应符合准二级动力学方程.吸附热力学反应符合Langmuir吸附等温方程.结合FTIR谱图和SEM结果,推断小麦秸秆对Cr(Ⅵ)的吸附过程以化学吸附为主.   相似文献   

7.
为使浒苔得到资源化利用,本研究采用慢速热解技术于不同温度下制备浒苔生物炭,并对其理化性质进行表征.结果表明,400℃时,浒苔裂解已达较高程度.浒苔生物炭产率及灰分含量与热解温度呈负相关,碳含量与热解温度呈正相关,其表面呈蜂窝状多孔结构,比表面积为44.54~317.82 m~2·g~(-1),表面含有丰富的羟基(—OH)和羧基(—COOH)等含氧官能团.吸附实验显示,浒苔生物炭对Cr(Ⅵ)的吸附符合准二级动力学方程和Langmuir等温吸附模型.表明浒苔生物炭对Cr(Ⅵ)的吸附为单分子层化学吸附,主要受快速反应过程控制.浒苔生物炭吸附Cr(Ⅵ)的最适p H为2,吸附容量表现为BC400BC700BC600BC500BC300,其中BC400的吸附量为4.79 mg·g~(-1).浒苔生物炭对Cr(Ⅵ)的吸附机制主要包括生物炭与HCr O-4和Cr2O_2-7等阴离子之间的静电作用,以及生物炭表面—OH和—COOH等含氧官能团的络合作用.  相似文献   

8.
采用铁、锰对水稻秸秆生物质碳(BC)进行改性,将制备所得的锰改性生物碳(Mn-BC)和铁锰改性生物碳(Fe-Mn-BC)作为吸附剂,用于对水中Sb (Ⅲ)的吸附实验.通过全自动比表面积及孔隙度分析仪(BET)、扫描电子显微镜(SEM)对吸附剂的表面性质进行研究,在吸附最佳pH值和投加量条件下开展等温吸附、动力学吸附及体系共存阴离子影响实验,探究改性生物炭的再生吸附能力,最后利用傅里叶红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)探究Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附机理.结果表明:改性生物炭具有更大的比表面积及总孔容积.BC在pH值为2,Mn-BC和Fe-Mn-BC在pH值为4,投加量为2.5g/L,25℃条件下,BC、Mn-BC和Fe-Mn-BC的最大吸附量分别为5.08,11.45,29.45mg/g.BC对Sb (Ⅲ)的吸附主要为物理吸附,Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附为化学兼具物理吸附.Mn-BC吸附Sb (Ⅲ)受F-、HCO3-和H2PO4-的影响较大,Fe-Mn-BC对Sb (Ⅲ)的吸附基本不受离子类型和离子强度的干扰.Fe-Mn-BC较Mn-BC具有更突出的吸附再生能力和重复利用性.Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附过程,先是氧化反应将大部分的Sb (Ⅲ)氧化为Sb (Ⅴ),再通过酸性条件下明显的静电作用,Sb (Ⅴ)与负载于Mn-BC上的Mn和Fe-Mn-BC上的Fe/Mn分别形成较为稳定的内层络合物Mn-O-Sb和Fe-O-Sb-Mn.此外,改性生物炭的官能基团-OH、C=O、N-H在吸附作用中也发挥着重要作用.  相似文献   

9.
以南荻秸秆生物炭为实验原料,利用Fe-NH4Cl进行改性,研究其对Pb2+的吸附效果。通过考察生物炭用量、溶液初始p H值、吸附时间及溶液初始浓度对吸附的影响,并对吸附前后生物炭样品进行傅里叶变换红外光谱分析(FITR)、比表面积(BET)、X-射线衍射(XRD)、电镜扫描(SEM)表征。结果表明在pH=5、溶液浓度为50 mg/L、温度为30℃、吸附时间为180 min、吸附剂用量在1.4 g/L、改性生物炭对Pb~(2+)吸附量达35.4 mg/g,与未改性生物炭相比吸附量提高20倍左右。生物炭对Pb~(2+)的吸附机理主要为表面羟基(—OH)和羰基(C=O)与Pb2+表面发生络合化学反应作用。  相似文献   

10.
为高效利用生物质能源,以常见农林废弃物柠条为原料,在650℃、3h条件下,采用限氧热裂解法制备生物炭,通过直接修饰法用Al改性柠条生物炭,进行批量吸附P实验.利用4种等温吸附模型(Langmuir、Freundlich模型、Temkim、D-R模型)和4种吸附动力学模型(准一级动力学、准二级动力学、Elovich模型、颗粒内扩散模型)以及pH值、添加量影响试验,探讨Al改性生物炭对P的吸附特性.同时,使用FTIR红外、元素分析、SEM和比表面积及孔径分析等技术表征了生物炭的理化性质,揭示了Al改性生物炭对P的吸附机理,并对比了多种改性生物炭对P的吸附效果.结果表明:柠条生物炭(NB)对P的吸附量很低,Al改性柠条生物炭(Al-NB)最佳改性比例为0.2:1,对P的吸附量是NB的8.35倍.Langmuir模型能够很好的描述Al-NB对P的等温吸附过程;Al-NB对P的吸附动力学符合准一级动力学模型,说明其吸附通过边界扩散完成的单层吸附.Al-NB对P的理论最大吸附量为19.97mg/g,平衡时间为24h.随着添加量的增大,Al-NB对P的吸附量不断减小,去除率逐渐增加,2.5g/L为最佳添加量;最适pH为4~10,当pH=7时,达到最大;吸附P后,溶液的pH值向中性范围倾靠,有一定缓冲作用.吸附机理包括:静电吸附作用,配体交换(羟基),P与阴离子(NO3-)交换,颗粒内表面络合作用等.以期为水体富营养化治理提供科学依据.  相似文献   

11.
在不同热解温度及原料配比条件下,采用水解共沉淀方法制备针铁矿改性生物炭材料(GMB),借助SEM-EDS、XRD、FTIR、XPS进行表征,并进行Cr (Ⅵ)吸附实验,探究吸附性能和机理。结果表明:1)经改性后生物炭表面生成了羟基氧化铁(FeOOH),吸附能力有大幅提升;2)热解温度为600℃,生物炭与Fe (NO33·9H2O的质量比为1:12时制备的GMB600-12表现出最佳吸附性能,最大吸附容量为20.67 mg/g;3)准二级动力学揭示Cr (Ⅵ)的吸附以化学吸附为主,Langmuir和Freundlich模型都能很好地描述GMB对Cr (Ⅵ)的吸附特征;4) XPS的结果进一步表明GMB去除水溶液中Cr (Ⅵ)是氧化还原和表面吸附协同作用的结果。  相似文献   

12.
腐殖酸对生物炭去除水中Cr(Ⅵ)的影响机制研究   总被引:3,自引:2,他引:3  
以污泥生物炭作吸附剂处理水中Cr(Ⅵ),研究了共存腐殖酸对生物炭吸附性能影响.结果表明,腐殖酸能显著促进生物炭对Cr(Ⅵ)的吸附,大幅提高吸附量以及缩短吸附平衡时间,生物炭吸附过程符合准二级动力学模型.在溶液初始pH4.0,生物炭浓度20 g·L-1,Cr(Ⅵ)初始浓度在50~800 mg·L-1范围下,Langmuir模型比Freundlich模型更好地描述等温吸附行为.加入腐殖酸(20 mg·L-1)后拟合得到的理论饱和吸附量达10.10 mg·g-1,较未加入腐殖酸的吸附量5.56 mg·g-1提高近1倍.在pH 2.0~8.0范围内,吸附量随溶液初始pH值升高而减小.腐殖酸浓度上升,生物炭吸附能力进一步提高.红外光谱显示,生物炭表面的羟基、羧基、酯基、芳香环上C—H和环状结构上的CC等化学活性官能团与Cr(Ⅵ)的吸附有关.结合XPS分析结果,推断腐殖酸共存促进生物炭吸附的机制是:腐殖酸提高了Cr(Ⅵ)在生物炭表面聚集浓度,有利于生物炭对Cr(Ⅵ)的直接吸附和还原,而腐殖酸本身具有的吸附能力增加了对溶液中Cr(Ⅵ)和Cr(Ⅲ)的去除.  相似文献   

13.
利用制药污泥热解制备生物炭,考察ZnCl2活化条件对生物炭吸附性能的影响,并探究生物炭对制药废水的吸附处理特性。提高ZnCl2活化剂的浓度和浸渍比均可提升制药污泥生物炭的吸附性能,5 mol/L ZnCl2活化剂在1:1浸渍比下获得的生物炭的比表面积达到534.91 m2/g,碘吸附值和苯酚吸附值分别达到674.61,119.12 mg/g。制药污泥生物炭对制药废水COD吸附动力学与叶洛维奇模型和拟二级吸附动力学模型较为相符,1 h内为生物炭对COD的快速吸附阶段。制药污泥生物炭投加量的提升,可提高废水中污染物去除率,在50 g/L生物炭投加量下吸附1 h,可实现66.3% COD和61.8%可吸附有机卤素(AOX)的去除。而多级吸附可在较低投加量下实现更好的污染物去除效果,1 g/L投加量下进行6级吸附可去除72.8%的COD和65.2%的AOX。这揭示了制药污泥在ZnCl2活化条件下热解可制备高吸附性能生物炭,并展现了出色的制药废水吸附处理效果。  相似文献   

14.
鉴于污泥基生物炭作为重金属吸附剂的研究还缺乏足够的数据,为探讨不同热解温度对生物炭结构性质及其对水体重金属吸附能力的影响,在缺氧条件下于300~900℃范围内以城市污泥为原料制备生物炭,利用元素分析、比表面积测定、电位测定和红外光谱分析等方法对生物炭的理化性质和结构特征进行表征,并选用900℃生物炭进行了吸附重金属Pb、Cr和Cd的试验研究.结果表明:① 300~900℃缺氧条件下制备的生物炭产率为44.39%~69.41%,污泥呈弱酸性(pH为6.35),热解后的生物炭呈碱性(pH为7.7~10.58).② 900℃生物炭中w(H)、w(N)大幅降低,分别比干污泥中减少89.50%和77.16%,而w(C)降低29.22%,固碳作用显著.热解后生物炭比表面积明显增大,700和900℃生物炭比表面积分别达到58.48和87.55 m2/g,最佳制备温度为700~900℃.③ 热解后的生物炭具有大量极性基团,热解温度越高,酸性基团越少,碱性基团含量增多.④ 热解作用使生物炭zeta电位升高,吸附能力增强.⑤ 900℃生物炭吸附Pb、Cr和Cd的最佳pH为7~8,对Pb、Cr和Cd的最大吸附量分别为2.38、2.48和1.16 mg/g.⑥ 各因素对生物炭吸附重金属的影响顺序,对于Pb和Cr表现为生物炭投加量>热解温度;对于Cd,表现为生物炭投加量>pH.研究显示,污泥基生物炭对Pb、Cr的吸附能力高于Cd,影响生物炭吸附行为的主导因子为生物炭投加量,影响Pb和Cr吸附的次要因子为生物炭热解温度,而影响Cd的次要因子为pH.生物炭吸附重金属的主要机理是离子交换吸附、络合反应、表面沉淀和竞争性抑制作用.   相似文献   

15.
余剑  丁恒  张智霖  李燕  丁磊 《中国环境科学》2021,41(12):5688-5700
以菱角壳为原料,乙酸钾为活化剂,通过活化碳化一步法制备了改性生物炭(MBC),对其表面形貌、孔径分布、官能团等表面性能进行了表征,并研究了其对水中盐酸土霉素(OTC)的吸附去除行为.相比于热解生物炭(BC),MBC有更高的比表面积(1147.80m2/g)、更丰富的孔径结构,更多的含氧官能团和更强的亲水性.溶液pH值在3~8时,MBC对OTC保持较高的吸附量(165mg/g).拟二级动力学模型和Langmuir模型可以很好地描述MBC对OTC的吸附行为.热力学分析显示MBC对OTC的吸附是一个自发吸热过程.除氢键作用、π-π键堆积作用和阳离子-π键作用以外,孔填充是MBC吸附去除OTC的主要作用机理.0.5mol/L氢氧化钠溶液可有效再生吸附饱和的MBC.因此,MBC作为一种吸附剂去除水和废水中的土霉素具有较好的潜能.  相似文献   

16.
Fe3O4/BC复合材料的制备及其吸附除磷性能   总被引:2,自引:0,他引:2       下载免费PDF全文
为解决磁性吸附剂Fe3O4不稳定、易在水中团聚以及吸附效率较低的问题,以BC(生物炭)为载体,采用化学共沉淀法制备了Fe3O4/BC(生物炭负载的纳米四氧化三铁)复合材料,并将其应用于水体中PO43--P的吸附去除;探究了Fe3O4/BC对水中PO43--P的吸附-解析性能,考察了纳米Fe3O4负载比例、吸附体系pH和初始ρ(PO43--P)等因素对Fe3O4/BC吸附PO43--P效率的影响,并考察了吸附机制.结果表明:所制备的Fe3O4纳米颗粒呈球形,均匀散布在生物炭表面;Fe3O4/BC复合材料能高效吸附水中的PO43--P,在pH=3、温度为25℃、ρ(PO43--P)为50 mg/L、Fe3O4/BC投加量为400 mg(二者质量比为1:1),吸附3 h达到平衡后,Fe3O4/BC吸附PO43--P效率达到92.14%. Fe3O4/BC复合材料吸附PO43--P的机制包括配位体交换和静电吸引,吸附过程较好地符合准二级动力学模型和Langmuir等温吸附方程. Fe3O4/BC具有良好的解析性能,用c(NaOH)为2.0 mol/L的溶液对吸附PO43--P饱和后的Fe3O4/BC进行解析,解析效率达到80%.研究显示,Fe3O4/BC重复利用性好,在第4次利用后还能保持75%以上的吸附效率.   相似文献   

17.
为探究不同裂解温度下稻壳生物炭的结构和性质差异及其对阿特拉津(AT)的吸附作用机制和构-效关系,以稻壳为原料在300、500和700℃下制备稻壳生物炭(分别记为RH300、RH500、RH700),通过电镜扫描、元素分析仪、比表面积分析仪和傅里叶变换红外光谱分析仪等对3种稻壳生物炭进行结构表征分析,并采用批量等温吸附法研究稻壳生物炭对AT的吸附特性.结果表明:裂解温度由300℃升至700℃时,稻壳生物炭中w(C)由48.81%升至64.67%,w(H)、w(N)和w(O)则由3.22%、1.45%和34.66%分别降至0.89%、0.92%和16.29%,原子比H/C、O/C和(O+N)/C值均降低.可见,随着裂解温度升高,稻壳生物炭的芳香性增强,亲水性和极性降低,且比表面积和孔体积增大,平均孔径减小.3种稻壳生物炭对AT的吸附均可用Freundlich和Langmuir两种等温吸附模型进行较好地拟合(R≥0.948,P < 0.01),吸附作用及非线性程度与生物炭的比表面积(SSA)、芳香性(H/C)、亲水性(O/C)和极性〔(O+N)/C〕呈良好的指数关系,大小表现为RH700 > RH500 > RH300.稻壳生物炭对AT的吸附机制主要包括分配作用和表面吸附,分配作用强度与生物炭的极性和炭化程度有关;而表面吸附作用与AT的分子大小有关,3种稻壳生物炭对AT的表面吸附除表面覆盖外,还存在多层平铺、毛细管现象和孔隙填充等.研究显示,裂解温度是影响生物炭吸附有机污染物的重要因素,在综合考虑成本和制备工艺的同时,适当提高裂解温度可增强生物炭对有机污染物的吸附作用.   相似文献   

18.
选取木棉为原材料,在不同温度下制备成生物炭.实验考察了溶液初始pH、不同热解温度及生物炭投加量对吸附效果的影响,并利用吸附动力学、吸附等温线及SEM-EDS、FTIR、XPS、Zeta电位等手段研究木棉生物炭对水溶液Cr(Ⅵ)的吸附特性及吸附机理.结果表明,热解温度为400℃,固液比为2∶1,pH=2.0时,木棉生物炭对水溶液中Cr(Ⅵ)的吸附效果最好.吸附动力学和吸附等温线结果显示,颗粒内扩散方程和Langmuir模型更能较好地拟合吸附过程.由Langmuir模型可以看出,400、550、700℃热解温度下制备的木棉生物炭对水溶液中Cr(Ⅵ)的最大吸附量分别为25.325、20.602、19.616 mg·g-1.FTIR和Zeta结果表明,木棉生物炭主要通过官能团络合和静电吸附作用去除水溶液中Cr(Ⅵ).XPS分析结果显示,生物炭表面大部分Cr(Ⅵ)被还原为Cr(Ⅲ),其中,Cr(Ⅵ)占比为26.6%,Cr(Ⅲ)占比为73.4%.研究表明,木棉生物炭作为去除水溶液中Cr(Ⅵ)的吸附剂具有较大的应用潜力.  相似文献   

19.
浒苔生物炭对雨水径流中氨氮的吸附特性及吸附机制   总被引:1,自引:0,他引:1  
为探究生物滞留池填料(浒苔生物炭)处理雨水径流氨氮(NH4+-N)的去除效果及机制,进行室内批量吸附实验,在对浒苔生物炭进行碱改性(1、2和3 mol·L-1 NaOH改性,分别标记为BC1、BC2和BC3)基础上,开展改性前后浒苔生物炭对NH4+-N吸附性能研究.结果表明:①适宜浓度的碱改性提高了浒苔生物炭的比表面积和表面微观结构,增加了O元素含量,丰富了表面官能团,其中BC2改性效果最好.②浒苔生物炭对NH4+-N的吸附在pH值9.0和生物炭投加量0.5 g·L-1时,吸附量最大,BC1和BC2的吸附量比BC分别提高6.4%和10.8%,BC3则降低13.7%,BC2吸附效果最好,饱和吸附量达16.76mg·g-1.③浒苔生物炭对NH4+-N的吸附机制为单分子层的化学吸附,吸附过程受到生物炭的高pH值、孔隙的静电吸引以及表面羟基(-OH)、羧基(-COOH)和碳氧单键(C-O)等官能团的络合氧化等的促进作用.综上所述,适量的NaOH来改性浒苔生物炭能够提高对NH4+-N的吸附效果,可作生物滞留池的填料来去除NH4+-N污染.  相似文献   

20.
以荷叶为原料,以KOH为活化剂,制备了高比表面积的荷叶基生物炭,利用扫描电镜和氮气吸脱附仪对样品的微观形貌和微观结构进行了表征,并对该荷叶基生物炭对水中氟离子的吸附性能进行了考察。结果表明,该荷叶基生物炭的比表面积为704.5 m~2/g,孔容为0.38 cm~3/g;可以明显看到生物炭表面均匀分布的大孔孔道;在质量浓度为10 mg/L的氟离子溶液中,氟离子在荷叶基生物炭上的吸附基本达到平衡;每100 mL氟离子溶液中加入1 g荷叶基生物炭时,除氟效果最佳,对氟离子的吸附容量为0.85 mg/g;荷叶基生物炭吸附动力学符合准二级动力学模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号