首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Magnetic compass orientation in birds is based on light-dependent processes, with magnetoreception being possible only under light containing blue and green wavelengths. To look for possible intensity-dependent effects we tested Australian silvereyes during autumn migration under monochromatic green light (565 nm) produced by light-emitting diodes at various light levels. At intensities of 0.0021 and 0.0075 W/m2, the birds showed normal activity and were oriented in their seasonally appropriate migratory direction. Under low light of 0.0002 W/m2 the birds were less active; scatter increased, but they still oriented in their migratory direction. Under a high light level of 0.0150 W/m2, however, the test birds showed a counterclockwise shift in direction, preferring west-northwest instead of north. This change in behavior may reflect a change in the output of the magnetoreception system, resulting from a disruption of the natural balance between the wavelengths of light. Received: 18 June 1999 / Accepted in revised form: 20 September 1999  相似文献   

2.
Here, we provide evidence for a wavelength-dependent effect of light on magnetic compass orientation in Pelophylax perezi (order Anura), similar to that observed in Rana catesbeiana (order Anura) and Notophthalmus viridescens (order Urodela), and confirm for the first time in an anuran amphibian that a 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500 nm) is due to a direct effect of light on the underlying magnetoreception mechanism. Although magnetic compass orientation in other animals (e.g., birds and some insects) has been shown to be influenced by the wavelength and/or intensity of light, these two amphibian orders are the only taxa for which there is direct evidence that the magnetic compass is light-dependent. The remarkable similarities in the light-dependent magnetic compasses of anurans and urodeles, which have evolved as separate clades for at least 250 million years, suggest that the light-dependent magnetoreception mechanism is likely to have evolved in the common ancestor of the Lissamphibia (Early Permian, ~294 million years) and, possibly, much earlier. Also, we discuss a number of similarities between the functional properties of the light-dependent magnetic compass in amphibians and blue light-dependent responses to magnetic stimuli in Drosophila melanogaster, which suggest that the wavelength-dependent 90° shift in amphibians may be due to light activation of different redox forms of a cryptochrome photopigment. Finally, we relate these findings to earlier studies showing that the pineal organ of newts is the site of the light-dependent magnetic compass and recent neurophysiological evidence showing magnetic field sensitivity in the frog frontal organ (an outgrowth of the pineal).  相似文献   

3.
Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180 degrees. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use-in contrast to another previously researched Arthropod, spiny lobster-the inclination compass.  相似文献   

4.
The radical pair model of magnetoreception predicts that magnetic compass orientation can be disrupted by high frequency magnetic fields in the Megahertz range. European robins, Erithacus rubecula, were tested under monochromatic 565 nm green light in 1.315 MHz fields of 0.48 T during spring and autumn migration, with 1.315 MHz being the frequency that matches the energetic splitting induced by the local geomagnetic field. The birds responses depended on the alignment of the oscillating field with respect to the static geomagnetic field: when the 1.315 MHz field was aligned parallel with the field lines, birds significantly preferred northerly directions in spring and southerly directions in autumn. These preferences reflect normal migratory orientation, with the variance slightly increased compared to control tests in the geomagnetic field alone or to tests in a 7.0 MHz field. However, in the 1.315 MHz field aligned at a 24° angle to the field lines, the birds were disoriented in both seasons, indicating that the high frequency field interfered with magnetoreception. These finding are in agreement with theoretical predictions and support the assumption of a radical-pair mechanism underlying the processes mediating magnetic compass information in birds.  相似文献   

5.
The currently discussed model of magnetoreception in birds proposes that the direction of the magnetic field is perceived by radical-pair processes in specialized photoreceptors, with cryptochromes suggested as potential candidate molecules mediating magnetic compass information. Behavioral studies have shown that magnetic compass orientation takes place in the eye and requires light from the blue-green part of the spectrum. Cryptochromes are known to absorb in the same spectral range. Because of this we searched for cryptochrome (CRY) in the retina of European robins, Erithacus rubecula, passerine birds that migrate at night. Here, we report three individually expressed cryptochromes, eCRY1a, eCRY1b, and eCRY2. While eCRY1a and eCRY2 are similar to the cryptochromes found in the retina of the domestic chicken, eCRY1b has a unique carboxy (C)-terminal. In light of the radical-pair model, our findings support a potential role of cryptochromes as transducers for the perception of magnetic compass information in birds.  相似文献   

6.
Passerine migrants require light from the blue-green part of the spectrum for magnetic compass orientation; under yellow light, they are disoriented. European robins tested under a combination of yellow light and blue or green light showed a change in behavior, no longer preferring their seasonally appropriate migratory direction: in spring as well as in autumn, they preferred southerly headings under blue-and-yellow and northerly headings under green-and-yellow light. This clearly shows that yellow light is not neutral and suggests the involvement of at least two types of receptors in obtaining magnetic compass information, with the specific interaction of these receptors being rather complex.  相似文献   

7.
European robins tested under monochromatic green light with a peak wavelength of 565 nm at an intensity of 2.1 mW m-2 in the local geomagnetic field preferred their migratory direction, heading southward in autumn and northward in spring. Inverting of the vertical component of the magnetic field caused the robins to reverse their headings, indicating that the birds used a magnetic inclination compass to locate their migratory direction. The behavior recorded under green light at an intensity of 2.1 mW m-2 is thus not different from that previously recorded under "white" light; it represents normal migratory orientation.  相似文献   

8.
Under 502 nm turquoise light combined with 590 nm yellow light and in total darkness, European robins, Erithacus rubecula, no longer prefer their migratory direction, but exhibit so-called fixed direction responses that do not show the seasonal change between spring and autumn. We tested robins under these light conditions in the local geomagnetic field of 46 μT, a field of twice this intensity, 92 μT, and a field of three times this intensity, 138 μT. Under all three magnetic conditions, the birds preferred the same easterly direction under turquoise-and-yellow light and the same northwesterly direction under dark, while they were oriented in their seasonally appropriate direction under control conditions. “Fixed direction” responses are thus not limited to a narrow intensity window as has been found for normal compass orientation. This can be attributed to their origin in the magnetite-based receptor in the upper beak, which operates according to fundamentally different principles than the radical pair mechanism in the retina mediating compass orientation. “Fixed direction” responses are possibly a relict of a receptor mechanism that changed its function, now mainly providing information on magnetic intensity.  相似文献   

9.
Wind and sky as compass cues in desert ant navigation   总被引:2,自引:0,他引:2  
While integrating their foraging and homing paths, desert ants, Cataglyphis fortis, depend on external compass cues. Whereas recent research in bees and ants has focused nearly exclusively on the polarization compass, two other compass systems—the sun compass and the wind (anemo) compass—as well as the mutual interactions of all these compass systems have received little attention. In this study, we show that of the two visual compass systems, it is only the polarization compass that invariably outcompetes the wind compass, while the sun compass does so only under certain conditions. If the ants are experimentally deprived of their polarization compass system, but have access simultaneously to both their sun compass and their wind compass, they steer intermediate courses. The intermediate courses shift the more towards the wind compass course, the higher the elevation of the sun is in the sky.  相似文献   

10.
It is thought that young homing pigeons are able to use information acquired en route for their initial homeward orientation. However, the cues involved and mechanisms utilised are under discussion. Blocking light-dependent route-specific information during the first leg of an outward journey detour, together with analysis of pigeons that were raised under different loft conditions, allowed us to correctly evaluate the functioning of this mechanism and, more generally, the navigational map of birds. Pigeons from the same stock were raised and kept in two different lofts. The birds in the experimental groups were transported to the release sites via detours, and light-dependent information was denied during the first half of the outward journey (no compass information was available). Control birds were transported by the most direct route and had access to all available information. In general, the results showed that the low-loft birds preferred to use magnetic compass cues, whereas the high-loft birds preferred to use navigational map cues to collect information of the first part of the outward journey. The impairments observed in the homing performances of the experimental groups highlight the reliability of information collected inside the map area. Relevant to an understanding of the route-reversal mechanism was the evidence that this mechanism is able to function in the absence of compass information (birds raised in a wind-exposed loft show a detour effect). In systems where directional information could be provided by multiple sources, processing and extracting accurate course trajectories through a common mechanism may prove more efficient and reliable.  相似文献   

11.
In search of the sky compass in the insect brain   总被引:2,自引:0,他引:2  
Like many vertebrate species, insects rely on a sun compass for spatial orientation and long- range navigation. In addition to the sun, however, insects can also use the polarization pattern of the sky as a reference for estimating navigational directions. Recent analysis of polarization vision pathways in the brain of orthopteroid insects sheds some light onto brain areas that might act as internal navigation centers. Here I review the significance, peripheral mechanisms, and central processing stages for polarization vision in insects with special reference to the locust Schistocerca gregaria. As in other insect species, polarization vision in locusts relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Stages in the brain involved in polarized light signaling include specific areas in the lamina, medulla and lobula of the optic lobe and, in the midbrain, the anterior optic tubercle, the lateral accessory lobe, and the central complex. Integration of polarized-light signals with information on solar position appears to start in the optic lobe. In the central complex, polarization-opponent interneurons form a network of interconnected neurons. The organization of the central complex, its connections to thoracic motor centers, and its involvement in the spatial control of locomotion strongly suggest that it serves as a spatial organizer within the insect brain, including the functions of compass orientation and path integration. Time compensation in compass orientation is possibly achieved through a neural pathway from the internal circadian clock in the accessory medulla to the protocerebral bridge of the central complex.  相似文献   

12.
 In a previous study, Australian silvereyes tested in autumn under monochromatic 565-nm green light at intensities of 2.1 and 7.5 mW m–2 preferred their normal northerly migratory direction, whereas they showed a significantly different tendency towards northwest at 15.0 mW m–2. Repeating these experiments in spring with silvereyes migrating southward, we again observed well-oriented tendencies in the migratory direction at 2.1 and 7.5 mW m–2. At 15.0 mW m–2, however, the birds once more preferred northwesterly directions, i.e. their response under this condition proved to be independent of the migratory direction. This contradicts the interpretation that monochromatic green light of this high intensity leads to a rotation of compass information; instead, it appears to produce sensory input that causes birds to give up their migratory direction in favor of a fixed direction of as yet unknown origin. Received: 3 April 2000 / Accepted in revised form: 19 June 2000  相似文献   

13.
ABR成熟颗粒污泥的分形特征与尺度效应   总被引:6,自引:2,他引:4  
建立了基于SEM照片研究ABR成熟颗粒污泥分形特征的操作程序,采用Photoshop、Newscan和Fips程序对该图形进行处理和分形维数计算.颗粒污泥的计盒维数值处于1.85以上,第3格室和第5格室形成的颗粒污泥较为致密.不同格室颗粒污泥边界的计盒维数的值在1.10左右,表明它们的边界或表面是不规则的,而且第1格室和第5格室形成的颗粒污泥的表面不规则程度高一些.颗粒污泥边界的圆规维数计算结果也表明其表面是不规则的,而且每一个颗粒污泥都存在2个分形维数的尺度区间,有的区间跨度达一个数量级.另外,不同的计算维数的方法会导致结果的差异.建立不同尺度域下的分形维数与颗粒污泥的组成、结构及物化特征的关系将具有重要意义.  相似文献   

14.
15.
室内模拟研究了太湖普遍存在的浮游藻类蓝藻(铜绿微囊藻)和绿藻(四尾栅藻)在不同光照和通气条件下的生长过程,以及该过程对水体理化性质以及水-沉积物界面磷交换过程的影响.研究结果表明,实验条件下(光照:2500lx;温度:27℃),蓝藻(铜绿微囊藻)具有绝对的竞争优势,成为水体中优势藻类.铜绿微囊藻在通空气和通氮气条件下均可以生长繁殖,在通氮气条件下需要较长时间的适应期,但达到的最大生物量远高于通空气条件.实验过程中,上覆水可溶性无机磷(DIP)浓度的变化为:无光环境>有光环境,通氮气环境>通空气环境,这种变化与有无藻类生长过程密切有关.有光条件下,藻类生长对磷的需求刺激了沉积物中生物可利用磷(AAP)的释放,同时也刺激了沉积物各种不同形态磷之间的相互转化.通氮气条件下,沉积物中磷的释放以Fe-P为主,Ca-P含量有所提高;通空气条件,Fe-P含量变化不大,Ca-P在有光组略有下降,但无光组变化不大;各试验组中有机磷和残渣磷的变化量基本相同;各试验组TP含量的变化不大.  相似文献   

16.
在室内模拟闭光与光照条件,研究长江口滨岸潮滩沉积物-水界面的可溶性硅(SiO3-Si)与无机氮(TIN)通量的变化规律,探讨相关理化因素对其的影响. 结果表明: 在春夏秋季适合硅藻生长的季节, 光照能促进硅藻生长与摄取硅, 从而能降低SiO3-Si通量,冬季相反,且二者的效应都不太明显. 光照能刺激底栖微生物将NH4+-N硝化为NOx-N, 从而明显降低NH4+-N通量,且能明显升高NOx-N通量. 通过相关分析及数学处理发现, 光照影响SiO3-Si通量的温度临界值为20 ℃; 盐度过高会减弱光照对NH4+-N通量的下降效应; 温度过高会减弱光照对NOx-N通量的上升效应. 采用趋势线斜率方法判定光照能降低上覆水中ρ(SiO3-Si)/c(TIN)值, 光照可能会对底栖微生物群落的结构产生较大影响.   相似文献   

17.
Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.  相似文献   

18.
Pigeon homing, investigated as a paradigmatic example of bird navigation, appears to be based on two mechanisms of orientation whose functions correspond to those of map and compass. Tasks of the latter are usually accomplished by a sun compass, taking into account the sun's movement and time of day. Under overcast skies, the magnetic field of the earth may be used for compass orientation. The "map" part of the system, responsible for site localization, makes use of olfactory perception of atmospheric trace compounds, which must be concluded to contain positional information in unfamiliar areas up to several hundreds of kilometers from home.  相似文献   

19.
基于地貌类型单元的京津冀近10a土地覆被变化研究   总被引:2,自引:0,他引:2  
基于资源与环境信息系统国家重点实验室提供的2000、2005、2010年京津冀土地覆被数据和1:100万数字地貌数据,研究2000—2010年间京津冀不同地貌类型单元下土地覆被的时空分异特征,挖掘土地覆被变化主导程度、叠合度、动态度在不同地貌类型单元下的变化规律,进一步探讨不同地貌类型单元下的土地覆被变化。结果表明:京津冀以耕地转变为城镇用地为主,平原、台地和丘陵城镇扩张加剧,耕地缩减明显;不同地貌类型单元的土地覆被总体变化差异较大,平原、丘陵和小起伏山地的变化较剧烈;林地和草地初期不断扩张,以平原、大起伏山地和丘陵最为典型,后期变化不明显。最后讨论了基于地貌类型单元研究京津冀地区土地覆被变化的意义,并提出探究地貌与土地覆被变化内在联系的建议。  相似文献   

20.
   Hopanoids are pentacyclic triterpenoid lipids occurring in bacteria. They are synthesized from isopentenyl units which are formed in a new biosynthetic route leading to isopentenyl diphosphate. Six C5 units are joined to form squalene, the immediate precursor in hopanoid synthesis. In a highly complex cyclization reaction that shares considerable similarities with that of oxidosqualene to sterols, the hopane skeleton is formed from squalene by the squalene-hopene cyclase. Recent elucidation of the X-ray structure of this membrane-bound cyclase has shed some light on the properties of this unusual enzyme. The active site is located in a cavity within the enzyme. The squalene substrate diffuses through a channel structure from the membrane into this cavity and is there transformed into hopene. Polar side chains are attached to hopene resulting in the amphiphilic molecular structure of many hopanoids. These hopanoids are membrane components involved in regulating membrane fluidity and stability. However, the many structural variants of hopanoids indicate that they may have other interesting but as yet unknown functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号