首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Among social insects, maintaining a distinct colony profile allows individuals to distinguish easily between nest mates and non-nest mates. In ants, colony-specific profiles can be encoded within their cuticular hydrocarbons, and these are influenced by both environmental and genetic factors. Using nine monogynous Formica exsecta ant colonies, we studied the stability of their colony-specific profiles at eight time points over a 4-year period. We found no significant directional change in any colony profile, suggesting that genetic factors are maintaining this stability. However, there were significant short-term effects of season that affected all colony profiles in the same direction. Despite these temporal changes, no significant change in the profile variation within colonies was detected: each colony’s profile responded in similar manner between seasons, with nest mates maintaining closely similar profiles, distinct from other colonies. These findings imply that genetic factors may help maintain the long-term stability of colony profile, but environmental factors can influence the profiles over shorter time periods. However, environmental factors do not contribute significantly to the maintenance of diversity among colonies, since all colonies were affected in a similar way.  相似文献   

2.
Workers of polydomous colonies of social insects must recognize not only colony-mates residing in the same nest but also those living in other nests. We investigated the impact of a decentralized colony structure on colony- and nestmate recognition in the polydomous Australian meat ant (Iridomyrmex purpureus). Field experiments showed that ants of colonies with many nests were less aggressive toward alien conspecifics than those of colonies with few nests. In addition, while meat ants were almost never aggressive toward nestmates, they were frequently aggressive when confronted with an individual from a different nest within the same colony. Our chemical analysis of the cuticular hydrocarbons of workers using a novel comprehensive two-dimensional gas chromatography technique that increases the number of quantifiable compounds revealed both colony- and nest-specific patterns. Combined, these data indicate an incomplete transfer of colony odor between the nests of polydomous meat ant colonies.  相似文献   

3.
To perform tasks, organisms often use multiple procedures. Explaining the breadth of such behavioural repertoires is not always straightforward. During house hunting, colonies of Temnothorax albipennis ants use a range of behaviours to organise their emigrations. In particular, the ants use tandem running to recruit naïve ants to potential nest sites. Initially, they use forward tandem runs (FTRs) in which one leader takes a single follower along the route from the old nest to the new one. Later, they use reverse tandem runs (RTRs) in the opposite direction. Tandem runs are used to teach active ants the route between the nests, so that they can be involved quickly in nest evaluation and subsequent recruitment. When a quorum of decision-makers at the new nest is reached, they switch to carrying nestmates. This is three times faster than tandem running. As a rule, having more FTRs early should thus mean faster emigrations, thereby reducing the colony’s vulnerability. So why do ants use RTRs, which are both slow and late? It would seem quicker and simpler for the ants to use more FTRs (and higher quorums) to have enough knowledgeable ants to do all the carrying. In this study, we present the first testable theoretical explanation for the role of RTRs. We set out to find the theoretically fastest emigration strategy for a set of emigration conditions. We conclude that RTRs can have a positive effect on emigration speed if FTRs are limited. In these cases, low quorums together with lots of reverse tandem running give the fastest emigration.  相似文献   

4.
The ability of social insects to discriminate against non-nestmates is vital for maintaining colony integrity, and in most social insect species, individuals act aggressively towards non-nestmates that intrude into their nest. Our experimental field data revealed that intra-colony aggression in the primitive bulldog ant Myrmecia nigriceps is negligible; our series of bioassays revealed no significant difference in the occurrence of aggression in trials involving workers from the same, a close (less than 300 m) or a far (more than 1.5 km) nest. Further, non-nestmate intruders were able to enter the nest in 60% of our trials; a similar level was observed in trials involving nestmates. These results suggest that workers of M. nigriceps are either unable to recognize alien conspecifics or that the costs of ignoring workers from foreign colonies are sufficiently low to favor low levels of inter-colony aggression in this species.  相似文献   

5.
Driver ants ( Dorylus spp.) show a high degree of worker polymorphism. Previous reports suggest that large Dorylus workers are specialised for defensive tasks. In this study, we first quantitatively tested whether there is a size-correlated division of defensive labour among workers. Second, we determined whether the spatial distribution of workers outside the nest can be predicted based on such size-specific differences in task allocation. We show that the division of defensive behaviour among different-sized workers is not strict. However, there is a significant correlation between worker size and the tendency to carry out defensive tasks. First, workers of larger size were more likely than smaller workers to participate in colony defence. Second, larger workers were more frequent near the nest containing the reproducing individuals and the brood. Finally, large workers were more common in open sections of the trail than in covered sections, which are likely to be less exposed to predators.  相似文献   

6.
Fungus-growing ants and their fungal cultivar form a highly evolved mutualism that is negatively affected by the specialized parasitic fungus Escovopsis. Filamentous Pseudonocardia bacteria occurring on the cuticle of attine ants have been proposed to form a mutualistic interaction with these ants in which they are vertically transmitted (i.e. from parent to offspring colonies). Given a strictly vertical transmission of Pseudonocardia, the evolutionary theory predicts a reduced genetic variability of symbionts among ant lineages. The aim of this study was to verify whether actinomycetes, which occur on Acromyrmex octospinosus leaf-cutting ants, meet this expectation by comparing their genotypic variability with restriction fragment length polymorphisms. Multiple actinomycete strains could be isolated from both individual ant workers and colonies (one to seven strains per colony). The colony specificity of actinomycete communities was high: Only 15% of all strains were isolated from more than one colony, and just 5% were present in both populations investigated. Partial sequencing of 16S ribosomal deoxyribonucleic acid of two of the isolated strains assigned both of them to the genus Streptomyces. Actinomycetes could also be isolated from workers of the two non-attine ant species Myrmica rugulosa and Lasius flavus. Sixty-two percent of the strains derived from attine ants and 80% of the strains isolated from non-attine ants inhibited the growth of Escovopsis. Our data suggest that the association between attine ants and their actinomycete symbionts is less specific then previously thought. Soil-dwelling actinomycetes may have been dynamically recruited from the environment (horizontal transmission), probably reflecting an adaptation to a diverse community of microbial pathogens.  相似文献   

7.
Social insect colonies respond to challenges set by a variable environment by reallocating work among colony members. In many social insects, such colony-level task allocation strategies are achieved through individual decisions that produce a self-organized adapting group. We investigated colony responses to parasitoids and native ant competitors in the red imported fire ant (Solenopsis invicta). Parasitoid flies affected fire ants by decreasing the proportion of workers engaged in foraging. Competitors also altered colony-level behaviours by reducing the proportion of foraging ants and by increasing the proportion of roaming majors, whose role is colony defence. Interestingly, the presence of both parasitism and competition almost always had similar effects on task allocation in comparison to each of the biotic factors on its own. Thus, our study uniquely demonstrates that the interactive effect of both parasitism and competition is not necessarily additive, implying that these biotic factors alter colony behaviour in distinct ways. More generally, our work demonstrates the importance of studying the dynamics of species interactions in a broader context.  相似文献   

8.
Wasps robbing food from ants: a frequent behavior?   总被引:1,自引:0,他引:1  
Food robbing, or cleptobiosis, has been well documented throughout the animal kingdom. For insects, intrafamilial food robbing is known among ants, but social wasps (Vespidae; Polistinae) taking food from ants has, to the best of our knowledge, never been reported. In this paper, we present two cases involving social wasps robbing food from ants associated with myrmecophytes. (1) Polybioides tabida F. (Ropalidiini) rob pieces of prey from Tetraponera aethiops Smith (Formicidae; Pseudomyrmecinae) specifically associated with Barteria fistulosa Mast. (Passifloraceae). (2) Charterginus spp. (Epiponini) rob food bodies from myrmecophytic Cecropia (Cecropiaceae) exploited by their Azteca mutualists (Formicidae; Dolichoderinae) or by opportunistic ants (that also attack cleptobiotic wasps). We note here that wasps gather food bodies (1) when ants are not yet active; (2) when ants are active, but avoiding any contact with them by flying off when attacked; and (3) through the coordinated efforts of two to five wasps, wherein one of them prevents the ants from leaving their nest, while the other wasps freely gather the food bodies. We suggest that these interactions are more common than previously thought.  相似文献   

9.
Multiple behavioral and chemical studies indicate that ant nestmate recognition cues are low-volatile substances, in particular hydrocarbons (HCs) located on the cuticular surface. We tested the hypothesis that in the ant Camponotus fellah, nest environment, in particular nest volatile odors, can modulate nestmate-recognition-mediated aggression. Workers were individually confined within their own nest in small cages having either a single mesh (SM = limited physical contact permitted) or a double mesh (DM = exposed to nest volatiles only) screen. Individual workers completely isolated outside their nest (CI) served as control. When reintroduced into a group of 50 nestmates, the CI workers were attacked as alien ants after only 2 weeks of separation, whereas the SM workers were treated as nestmates even after 2 months of separation. Aggression towards DM ants depended on the period of isolation. Only DM workers isolated for over 2 months were aggressed by their nestmates, which did not significantly differ from the CI nestmates. Cuticular HC analyses revealed that the profile of the non-isolated ants (NI) was clearly distinct from that of CI, SM and DM ants. Profile differences matched the aggressive response in the case of CI ants but were uncorrelated in the case of SM or DM ants. This suggests that keeping the ants within the nest environment affected nestmate recognition in additional ways than merely altering their HC profile. Nest environment thus appears to affect label–template mismatch by modulating aggressive behavior, as well as the direction at which cuticular HCs diverged during the separation period.  相似文献   

10.
In ants, winged queens that are specialized for independent colony foundation can be replaced by wingless reproductives better adapted for colony fission. We studied this shift in reproductive strategy by comparing two Mystrium species from Madagascar using morphometry, allometry and dissections. Mystrium rogeri has a single dealate queen in each colony with a larger thorax than workers and similar mandibles that allow these queens to hunt during non-claustral foundation. In contrast, Mystrium ‘red’ lacks winged queens and half of the female adults belong to a wingless ‘intermorph’ caste smaller and allometrically distinct from the workers. Intermorphs have functional ovaries and spermatheca while those of workers are degenerate. Intermorphs care for brood and a few mate and reproduce making them an all-purpose caste that takes charge of both work and reproduction. However, their mandibles are reduced and inappropriate for hunting centipedes, unlike the workers’ mandibles. This together with their small thorax disallow them to perform independent colony foundation, and colonies reproduce by fission. M. rogeri workers have mandibles polymorphic in size and shape, which allow for all tasks from brood care to hunting. In M. ‘red’, colonial investment in reproduction has shifted from producing expensive winged queens to more numerous helpers. M. ‘red’ intermorphs are the first case of reproductives smaller than workers in ants and illustrate their potential to diversify their caste system for better colonial economy.  相似文献   

11.
Living in groups raises important issues concerning waste management and related sanitary risks. Social insects such as ants live at high densities with genetically related individuals within confined and humid nests, all these factors being highly favorable for the spread of pathogens. Therefore, in addition to individual immunity, a social prophylaxis takes place, namely, by the removal of risky items such as corpses and their rejection at a distance from the ant nest. In this study, we investigate how Myrmica rubra workers manage to reduce encounters between potentially hazardous corpses and nestmates. Using both field and laboratory experiments, we describe how the spatial distribution and the removal distance of waste items vary as a function of their associated sanitary risks (inert item vs. corpse). In the field, corpse-carrying ants walked in a rather linear way away from the nest entrance and had an equal probability of choosing any direction. Therefore, they did not aggregate corpses in dedicated areas but scattered them in the environment. In both field and laboratory experiments, ants carrying corpses dropped their load in more remote—and less frequented—areas than workers carrying inert items. However, for equidistant areas, ants did not avoid dropping corpses at a location where they perceived area marking as a cue of high occupancy level by nestmates. Our results suggest that ants use distance to the nest rather than other occupancy cues to limit sanitary risks associated with dead nestmates.  相似文献   

12.
Here we show that trying to rob prey (cleptobiosis) from a highly specialized predatory ant species is risky. To capture prey, Allomerus decemarticulatus workers build gallery-shaped traps on the stems of their associated myrmecophyte, Hirtella physophora. We wondered whether the frequent presence of immobilized prey on the trap attracted flying cleptoparasites. Nine social wasp species nest in the H. physophora foliage; of the six species studied, only Angiopolybia pallens rob prey from Allomerus colonies. For those H. physophora not sheltering wasps, we noted cleptobiosis by stingless bees (Trigona), social wasps (A. pallens and five Agelaia species), assassin bugs (Reduviidae), and flies. A relationship between the size of the robbers and their rate of capture by ambushing Allomerus workers was established for social wasps; small wasps were easily captured, while the largest never were. Reduviids, which are slow to extract their rostrum from prey, were always captured, while Trigona and flies often escaped. The balance sheet for the ants was positive vis-à-vis the reduviids and four out of the six social wasp species. For the latter, wasps began by cutting up parts of the prey’s abdomen and were captured (or abandoned the prey) before the entire abdomen was retrieved so that the total weight of the captured wasps exceeded that of the prey abdomens. For A. pallens, we show that the number of individuals captured during attempts at cleptobiosis increases with the size of the Allomerus’ prey.  相似文献   

13.
 Fungi cultivated by fungus-growing ants (Attini: Formicidae) are passed on between generations by transfer from maternal to offspring nest (vertical transmission within ant species). However, recent phylogenetic analyses revealed that cultivars are occasionally also transferred between attine species. The reasons for such lateral cultivar transfers are unknown. To investigate whether garden loss may induce ants to obtain a replacement cultivar from a neighboring colony (lateral cultivar transfer), pairs of queenright colonies of two Cyphomyrmex species were set up in two conjoined chambers; the garden of one colony was then removed to simulate the total crop loss that occurs naturally when pathogens devastate gardens. Garden-deprived colonies regained cultivars through one of three mechanisms: joining of a neighboring colony and cooperation in a common garden; stealing of a neighbor's garden; or aggressive usurpation of a neighbor's garden. Because pathogens frequently devastate attine gardens under natural conditions, garden joining, stealing and usurpation emerge as critical behavioral adaptations to survive garden catastrophes. Received: 16 June 2000 / Accepted in revised form: 14 September 2000  相似文献   

14.
The integrity of social insect colonies is maintained by members recognising and responding to the chemical cues present on the cuticle of any intruder. Nevertheless, myrmecophiles use chemical mimicry to gain access to these nests, and their mimetic signals may be acquired through biosynthesis or through contact with the hosts or their nest material. The cuticular hydrocarbon profile of the myrmecophilous salticid spider Cosmophasis bitaeniata closely resembles that of its host ant Oecophylla smaragdina. Here, we show that the chemical resemblance of the spider does not arise through physical contact with the adult ants, but instead the spider acquires the cuticular hydrocarbons by eating the ant larvae. More significantly, we show that the variation in the cuticular hydrocarbon profiles of the spider depends upon the colony of origin of the ant larvae prey, rather than the parentage of the spider.  相似文献   

15.
 There is great potential for conflict within social insect colonies especially when there are multiple inseminated females laying eggs. One reason that conflict is not always realized may be that these females do not identify their own progeny and direct their attentions preferentially towards them. Using DNA microsatellite loci we were able to determine exactly which female was the mother of each larva in eight nests of the social wasp, Polistes carolina. Using 26 h of videotapes of natural nests we observed 2,093 feedings of specific larvae by these adults and found that they did not preferentially feed their own progeny. Instead feedings were distributed to progeny as predicted based on their frequency in the nest. The absence of nepotism towards closest kin within colonies in this system is likely to promote colony harmony. Received: 24 January 2000 / Accepted in revised form: 30 March 2000  相似文献   

16.
Social harmony often relies on ritualised dominance interactions between society members, particularly in queenless ant societies, where colony members do not have developmentally predetermined castes but have to fight for their status in the reproductive and work hierarchy. In this behavioural plasticity, their social organisation resembles more that of vertebrates than that of the “classic” social insects. The present study investigates the neurochemistry of the queenless ant species, Streblognathus peetersi, to better understand the neural basis of the high behavioural plasticity observed in queenless ants. We report measurements of brain biogenic amines [octopamine, dopamine, serotonin] of S. peetersi ants; they reveal a new set of biogenic amine influences on social organisation with no common features with other “primitively organised societies” (bumble bees) and some common features with “highly eusocial” species (honey bees). This similarity to honey bees may either confirm the heritage of queenless species from their probably highly eusocial ancestors or highlight independent patterns of biogenic amine influences on the social organisation of these highly derived species.  相似文献   

17.
The fungus gardens of fungus-growing ants are a potentially valuable resource for exploitation by natural enemies, but few of these antagonistic interactions have been studied. Here we describe key aspects of the behavioral ecology of Gnamptogenys hartmani (Ponerinae: Ectatommini), a specialized agro-predator of Trachymyrmex and Sericomyrmex fungus-growing ants in Panama. Raiding columns of G. hartmani attack and usurp nests with remarkably little effort: a few intruding workers are sufficient to cause panic among the attine ants and make them abscond from the nest. Both G. hartmani larvae and adults consume the fungus and the host brood, after which the colony migrates to a new fungus-growing ant nest discovered by scouting workers. The morphology of the G. hartmani larval mouthparts is similar to that of Gnamptogenys species with a non-fungal diet. However, we suggest that the presence of long spinules on the larval mandibles in the genus Gnamptogenys, comparable to those found in attine larvae, may have pre-adapted G. hartmani to fungus eating. G. hartmani workers do not actively maintain or modify fungus gardens, which makes them less efficient exploiters than Megalomyrmex, the only other agro-predatory ant species known so far.  相似文献   

18.
Tandem running is a recruitment strategy whereby one ant leads a single naïve nest mate to a resource. While tandem running progresses towards the goal, the leader ant and the follower ant maintain contact mainly by tactile signals. In this paper, we investigated whether they also deposit chemical signals on the ground during tandem running. We filmed tandem-running ants and analysed the position of the gasters of leaders and followers. Our results show that leader ants are more likely to press their gasters down to the substrate compared to follower ants, single ants and transporter ants. Forward tandem-run leaders (those moving towards a new nest site) performed such trail-marking procedures three times more often than reverse tandem leaders (those moving towards an old nest site). That leader ants marked the trails more often during forward tandem runs may suggest that it is more important to maintain the bond with the follower ant on forward tandem runs than on reverse tandem runs. Marked trails on the ground may serve as a safety line that improves both the efficiency of tandem runs and their completion rates.  相似文献   

19.
Animal lifespans range from a few days to many decades, and this life history diversity is especially pronounced in ants. Queens can live for decades. Males, in contrast, are often assumed to act as ephemeral sperm delivery vessels that die after a brief mating flight—a view developed from studies of lekking species in temperate habitats. In a tropical ant assemblage, we found that males can live days to months outside the nest, a trait hypothesized to be associated with female calling, another common mating system. We combined feeding experiments with respirometry to show that lifespan can be enhanced over 3 months by feeding outside the nest. In one focal female calling species, Ectatomma ruidum, feeding enhanced male lifespan, but not sperm content. Extended lifespans outside the nest suggest stronger than expected selection on premating traits of male ants, although the ways these traits shape male mating success remain poorly understood.  相似文献   

20.
Newly mated queens of monogynous (single queen) ants usually found their colonies independently, without the assistance of workers. In polygynous (multiple queen) species queens are often adopted back into their natal nest and new colonies are established by budding. We report that the Australian 'living-fossil' ant, Nothomyrmecia macrops, is exceptional in that its single queen can be replaced by one of the colony's daughters. This type of colony founding is an interesting alternative reproductive strategy in monogynous ants, which maximizes fitness under kin selection. Successive queen replacement results in a series of reproductives over time (serial polygyny), making these colonies potentially immortal. Workers raise nieces and nephews (relatedness h 0.375) the year after queen replacement. Although N. macrops is 'primitive' in many other respects, colony inheritance is likely to be a derived specialization resulting from ecological constraints on solitary founding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号