首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
基于pso-SVM的废水厌氧处理过程软测量模型   总被引:1,自引:0,他引:1  
由于厌氧消化过程的复杂性和厌氧菌的敏感性,保持厌氧消化体系的稳定和高效性是比较困难的.本文在实验室采用IC反应器构建了一套厌氧废水处理系统处理人工合成废水,基于支持向量机(SVM)提出了一种预测废水厌氧处理系统出水挥发性脂肪酸(VFA)浓度和COD去除率的软测量模型.为了提高模型的精确性和鲁棒性,加入pso算法(粒子群算法)优化SVM模型,并引入了分类策略对元数据集进行有效分类.仿真结果表明,基于pso-SVM模型的软测量模型对厌氧废水处理系统出水VFA浓度和COD去除率具有较好的预测能力,模型预测系统COD去除率及出水总VFA浓度测试样本数据相关系数分别为65.86%、85.25%;加入分类策略后,元数据集分成两类,模型预测系统COD去除率测试样本数据相关系数分别为92.34%、83.41%;模型预测系统出水总VFA浓度测试样本数据相关系数分别为99.14%、99.59%,系统预测精度明显提高.引入分类策略对元数据集进行有效分类,基于pso-SVM的软测量模型可为监控、优化和理解厌氧消化过程提供指导.  相似文献   

2.
采用厌氧/缺氧/好氧污水处理系统(A2/O)对人工合成污水进行处理,并利用人工神经网络(ANN)模型和自适应模糊人工神经网络(ANFIS)模型对A2/O处理污水的过程进行仿真模拟.在MATLAB环境下,选取可在线监测的水力停留时间(HRT)、进水pH值(pH)、好氧池溶解氧(DO)和混合液回流比(r)作为输入参量,系统出水氨氮浓度(NH4+eff)为输出量,建立在线预测模型.结合自适应模糊C均值聚类算法,确定ANFIS模型的模糊规则数及最优运行参数,对实验数据进行仿真预测.结果表明,与ANN模型相比,ANFIS模型的仿真输出值与实际值的拟合程度更高,相对误差在6.45%之内,平均绝对百分比误差(MAPE)为2.8%,均方根误差(RMSE)为0.1209,相关系数(R)达0.9956.模型训练过程中所得到的三维曲面图,可直观的反映各因素与出水氨氮浓度之间的非线性函数关系,为A2/O系统的高效稳定运行提供指导.  相似文献   

3.
悬浮物是松花江水质和水环境评价的重要参数之一.利用在松花江哈尔滨段江面上29个采样点的实测高光谱和悬浮物浓度数据,用20个采样点数据为训练集,9个采样点数据为测试集.将机器学习和全局优化智能计算方法引入,应用改进的粒子群(PSO)优化最小二乘支持向量机(LSSVM)参数,以均方根误差RMSE为适应度函数,根据迭代得到LSSVM最优参数值,用700 nm和750 nm光谱反射率比值(R700/R750)为特征变量,悬浮物数据为目标变量,用训练集数据训练得到反演模型,使用测试集数据进行验证.结果表明,此模型收敛速度快,精度高,得到预测值的均方根误差RMSE为10.11 mg·L-1,平均绝对百分误差MAPE为10.72%,模型决定系数R2为0.952,该方法可用来对其它水质参数反演预测提供参照.  相似文献   

4.
于宏兵  黄涛  林学钰  吴睿 《环境科学》2005,26(6):110-114
采用70℃高温水解酸化、高温厌氧、高温好氧、高温生物活性碳(BAC)组合工艺,对玉米深加工行业的高温工艺废水进行分相与分段处理研究,分别对COD、VFA、氨基酸等的去除处理效果进行研究和评价,在高温条件下完成高温高浓度有机废水的处理并达到回用热水、节能目的.结果表明:组合工艺系统对高浓度有机废水COD总去除率达到99.62%,VFA和氨基酸均为100%,出水COD<50mg/L,达到中水回用COD标准值,其中水解酸化相COD去除率占总去除率的49.7%,产甲烷相占33.7%,好氧段占14.5%,BAC段占1.1%;厌氧段占VFA总去除的56%,好氧段为21.2%,BAC段为21.8%;厌氧段占氨基酸总去除的34.8%,好氧段占62%,BAC段占3%.其中水解酸化有机负荷达到36.2kg/(m3·d).高温好氧和BAC组合工艺进水COD 3 500mg/L条件下,COD去除率仍能达到95.8%.整个系统运行平稳,抗冲负荷强,各段出水pH均在6.6~7.5之间波动.  相似文献   

5.
王梓璇  王圃  王颖  彭翰  华佩  张晋 《环境科学学报》2021,41(7):2942-2950
随着工业的快速发展,水体中污染物超标事件时有发生,造成了较严重的水环境污染问题.水环境监测与预报是环境科学研究的重要内容.为了实现地表水砷(As)污染的准确预报,本研究提出小波分解、遗传算法与BP人工神经网络的耦合建模方法,并结合某河流监测站1998—2016年共19年的地表水质监测数据,通过皮尔逊相关系数和信息指标评价法对模型输入变量进行筛选,最后对比分析了在不同水质参数输入情况下BP人工神经网络(BPNN)、遗传算法改进的BPNN(GABP)、小波-遗传BPNN耦合模型(W-GABP)对后6年(2011—2016年) As浓度预测结果的均方根误差(RMSE)、决定系数(R2)、平均绝对百分比误差(MAPE),以确立最优模型.结果表明:①多水质参数BPNN、GABP与W-GABP耦合模型预测结果的MAPE分别为17.51%、15.98%、14.46%,单水质参数BPNN、GABP与W-GABP耦合模型预测结果的MAPE分别为18.78%、16.74%、7.83%;②小波分解数据前处理及遗传算法均能较大程度地提高预测模型的精度;③对于地表水水质预报,需对比不同模型在不同输入变量下的预测结果,以获得最佳的预测精度.单水质参数输入的W-GABP耦合模型能较准确地预报地表水As浓度的变化情况,对数据缺乏地区水质监控和地表水As污染防治具有重要意义.  相似文献   

6.
UASB处理生物柴油废水的效果研究   总被引:1,自引:0,他引:1  
采用升流式厌氧污泥床(UASB)工艺处理地沟油回收制备生物柴油废水,通过试验研究了UASB反应器各个阶段对该类废水的处理效果,并考察了甲基磺酸、对甲基苯磺酸两种预酯化催化剂对该类废水处理效果的影响。结果表明:当进水COD为15g/L、容积负荷为15kg/(m3·d)时,UASB反应器COD的去除率稳定在87%左右,出水VFA为4~6mmol/L,沼气产量为16.8L/d;当容积负荷稳定在5kg/(m3·d),进水甲基磺酸浓度为5500mg/L时,UASB反应器COD的去除率达83%以上,进水对甲基苯磺酸浓度为1 000mg/L时,UASB反应器COD的去除率为58.3%,从废水处理的难易程度角度考虑,建议采用甲基磺酸为预酯化催化剂。  相似文献   

7.
基于小波分解和SVM的大气污染物浓度预测模型研究   总被引:2,自引:1,他引:1  
郑霞  胡东滨  李权 《环境科学学报》2020,40(8):2962-2969
针对大气污染物浓度的精准预测问题,运用小波分解将污染物浓度一维序列分解为高维信息,结合气象及污染物浓度数据,构建了基于小波分解的支持向量机预测模型.最后将模型应用于长沙市2018年PM2.5和O3-8 h的浓度预测.结果表明:①在其他参数不变的条件下,该模型在平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)、一致性水平(IA)和相关系数(R)指标上均优于未经小波分解的预测模型;②在考虑其他污染物对PM2.5浓度的影响后,预测模型评价指标MAE、MAPE和RMSE分别减少了5.57%、9.91%和3.44%,有着更小的误差;③在考虑气象因素对O3-8 h浓度的影响后,预测模型评价指标MAE、MAPE和RMSE分别减少了1.59%、3.54%和0.82%,同样也有更小的误差.由此可以看出,本文所提模型能够有效预测大气污染物浓度,为相关研究提供了方法参考.  相似文献   

8.
温度对ABR反应器处理效果和微生物群落结构的影响   总被引:12,自引:2,他引:10  
采用厌氧折流板反应器(Anaerobic baffled reactor, ABR)工艺处理模拟养猪场废水,考察低温(15±1)℃、中温(35±1)℃、高温(50±1)℃等3个温度条件对ABR处理效果和微生物群落结构的影响.同时,在水力停留时间HRT为24 h,进水COD为2000 mg·L-1的条件下,考察了不同温度条件对ABR系统出水COD、pH、挥发性脂肪酸(Volatile fatty acid, VFA)的影响.最后,采用扫描电镜和荧光原位杂交技术(Fluorescence in situ hybridization, FISH)分别考察了不同温度条件对污泥微生物形态、种群结构和相对丰度的影响.结果显示,中温条件下系统的COD去除率最高,保持在96%以上,而低温和高温条件下系统的COD去除率均在70%左右;温度变化对反应器内pH值的影响不大;VFA含量在中温条件下最低,表示反应器运行最稳定;FISH结果显示,中温条件下系统真细菌和古细菌的总相对丰度最高,比低温和高温条件下分别高出12%和27%.  相似文献   

9.
UASB厌氧反应器预处理印染废水的中试研究   总被引:3,自引:1,他引:2  
对厌氧上流式反应器(UASB)预处理难降解印染废水进行了中试研究。结果表明,厌氧上流式反应器稳定运行2个多月,在进水COD波动较大的情况下(最高1020.0mg/L,最低593.6mg/L,平均755.4mg/L),厌氧上流式反应器出水平均COD409.3mg/L,平均去除率为45.5%。厌氧上流式反应器对色度去除效果较佳,进水平均色度342倍,出水平均色度78倍,平均去除率为77.2%。印染废水B/C由0.29提高到0.46,提高了0.17,废水可生化性明显改善。  相似文献   

10.
乙酰螺旋霉素废水生物处理的试验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
采用相同体积 (6 2L)的升流厌氧污泥床和厌氧复合床处理乙酰螺旋霉素废水 ,当容积负荷为 6 0kg(COD) (m3 ·d)时 ,升流厌氧污泥床和厌氧复合床反应器对SS、COD、BOD5的去除率分别为 6 7 4 %、85 1%、91 2 %和 75 6 %、91 7%、96 1%,结果表明厌氧复合床是高效实用的厌氧生物反应器 ;厌氧出水采用相同体积 (6 4L)的生物接触氧化工艺和周期循环活性污泥系统进行处理 ,当容积负荷为 1 6kg(COD) (m3 ·d)时 ,生物接触氧化反应器和周期循环活性污泥系统对SS、COD、BOD5的去除率分别为 87 9%、85 1%、92 8%和 91 6 %、88 7%、95 4 %,结果表明周期循环活性污泥系统是高效实用的好氧生物反应器 .  相似文献   

11.
基于RF-LSTM的鸡舍恶臭气体预测研究   总被引:1,自引:0,他引:1  
以鸡舍氨气为研究对象,对鸡舍氨气预测模型进行了研究.首先,利用随机森林算法(RF)对影响鸡舍氨气浓度的环境变量进行重要性排序,选取温度、湿度、光照、气象温度、降雨量作为模型的输入变量;在此基础上,构建了基于长短时记忆神经网络(LSTM)的鸡舍氨气浓度预测模型,并将提出的预测模型应用于江苏省宜兴市某养鸡场的氨气浓度预测中,并与LSTM模型、RF-Elman模型和RF-BP模型进行了对比实验,结果表明,基于RF-LSTM模型的预测效果最好,其平均绝对误差(MAE)、平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为0.9183、4.9637%和1.4262;同时,为了验证该模型的性能,本文还实现了不同时间尺度的鸡舍氨气浓度预测,提前2h、3h、4h、5h氨气预测的平均绝对误差(MAE)分别为1.6218、2.1991、2.8553和3.0677.本文提出的预测模型提高了鸡舍氨气浓度的预测精度,可为减少鸡舍恶臭气体排放提供科学依据.  相似文献   

12.
试验研究中温(35℃)条件下,4隔室ABR处理生活污水时各隔室出水指标的沿程变化情况,研究结果表明:各隔室出水COD沿程递减,并且前3个隔室承担了去除COD的重要责任;各隔室的平均出水VFA沿程递减,说明ABR在处理低浓度生活污水时,存在着产酸、产甲烷相分离现象;实验结束时,发现前面隔室的污泥成灰色,泥水混合液较为粘稠,而最后2隔室中的污泥则在底部形成较稠密的污泥床。在实验结果的基础上建立了基质降解动力学模型,并对模型的计算值和实测值进行比较,误差在2%以内,说明该模型的建立是可行的,具有一定的实际意义。  相似文献   

13.
以赣州市2017年全年的空气质量和气象数据为研究对象,通过最大相关最小冗余算法(MRMR)提取出最优的特征子集,并将其作为预测模型的输入数据,同时构造混合核函数(HK)对传统的支持向量机模型(SVM)进行改进,最终建立MRMR-HK-SVM模型.实验结果表明,MRMR-HK-SVM模型有着更低的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE),相较于传统SVM模型,预测结果平均绝对误差下降了26.9%,且能更加准确的追踪到PM2.5浓度的突变时刻.可见,MRMR-HK-SVM模型具有更好的泛化能力,能够更加精确地预测PM2.5浓度.  相似文献   

14.
厌氧折流板反应器处理糖蜜酒精废水的研究   总被引:1,自引:0,他引:1  
为探究厌氧折流板反应器(ABR)对糖蜜酒精实际废水的处理效果,该实验采用已成功处理人工模拟糖蜜酒精废水的ABR,研究了该反应器处理糖蜜酒精工业废水过程中COD和SO42-的去除效果,以及各隔室VFA、pH和S2-的分布规律。实验结果表明,反应器处理糖蜜酒精工业废水,在30 d内达到稳定,COD和SO42-负荷分别为4.8 kg/(m3.d)和0.32 kg/(m3.d),COD和SO42-的去除率分别为83%和98%。反应器内各隔室挥发性脂肪酸(VFA)浓度变化规律与pH值变化规律一致,各隔室硫化物(S2-)浓度较低,其中第4、5隔室的S2-浓度低于40 mg/L。反应器内微生物菌群仍能保持处理模拟废水时形成的多相(产酸硫酸盐还原相和生成硫单质产甲烷相)分离特征,保证了ABR对实际工业废水的处理效率。  相似文献   

15.
针对紫外-可见光谱法检测水质COD预测模型的精度低和收敛速度慢等问题,研究了一种基于粒子群算法联合最小二乘支持向量机(PSO_LSSVM)的水质检测COD预测模型优化方法,并引入主元分析(PCA)算法对模型输入光谱数据进行降维预处理,借以提高模型的收敛速度.结果表明,利用粒子群(PSO)算法收敛速度快和全局优化能力,优化了最小二乘支持向量机(LSSVM)模型的惩罚因子和核函数参数,避免了人为选择参数的盲目性,克服了传统LSSVM预测模型的精度较低、稳健性较差等缺点.通过以收敛时间、预测平均相对误差(MRE)和均方根误差(RMSE)为评价标准进行评估,输入样本经过PCA降维预处理的PSO_LSSVM模型的预测能力和输入样本未经过降维预处理的LSSVM模型与PSO_LSSVM模型进行了比较分析,输入样本经过PCA降维预处理的PSO_LSSVM模型预测效果最优,且此算法使用C语言实现,易于移植,这为紫外-可见光谱水质COD在线、实时性检测奠定了基础.  相似文献   

16.
Terylene artificial silk printing and dyeing wastewater(TPD wastewater), containing averaged 710 mg/L terephthalic acid(TA) as the main carbon source and the character pollutant, was subjected to expanded granular sludge bed(EGSB) process. The stability of the EGSB process was firstly conducted by laboratory experiment. TA ionization was the predominated factor influencing the acid-base balance of the system. High concentration of TA in wastewater resulted in sufficient buffering capacity to neutralize the volatile fatty acids(VFA)generated from substrate degradation and provided strong base for anaerobic system to resist the pH decrease below 6.5. VFA and UFA caused almost no inhibition on the anaerobic process and biogas production except that pH was below 6.35 and VFA was at its maximum value. Along with the granulating of the activated sludge, the efficiency of organic removal and production rate of biogas increased gradually and became more stable. After start-up, the efficiency of COD removal increased to 57%—64%, pH stabilized in a range of 7.99—8.04, and production rate of biogas was relatively high and stable. Sludge granulating, suitable influent of pH and loading were responsible for the EGSB stability. The variation of VFA concentration only resulted in neglectable rebound of pH, and the inhibition from VFA could be ignored in EGSB. The EGSB reactor was stable for TPD wastewater treatment.  相似文献   

17.
测定挥发性脂肪酸(Volatile fatty acid,VFA)浓度的方法包括:蒸馏法、比色法、气相色谱法以及各种滴定法。就常规监测和控制而言,滴定法在简洁、省时和成效比方面要优越于其它测试方法。滴定法测定VFA主要包括四点滴定法、五点滴定法和八点滴定法。这些方法主要应用于厌氧反应器中高浓度VFA的测定,但随着活性污泥数学模型的应用,城市污水中低浓度VFA的测量越加重要,是模型应用不可缺少的条件。文章具体介绍了上述三种滴定方法的基本原理、优缺点和应用情况,为适用于城市污水中VFA测量提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号