首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为评价温岭市东环高架道路交通噪声的环境影响,采用实测法对东环高架附近代表性点位及不同时间段进行噪声监测,记录等效连续A声级(Leq),以及同步监测车流量、车型等相关数据.根据《声环境质量标准》(GB 3096-2008),由所得监测数据,推测其交通噪声空间分布规律.结果表明,噪声最大值发生于上下班高峰期,交通噪声则随距离的增加而衰减,而道路两侧高层建筑交通噪声随着高度的增加先由小变大后变小.此外,还为该高架道路交通噪声的防治提供一定的参考依据.  相似文献   

2.
通过对杭州市高架快速路和主次干道两侧敏感建筑群临路第一排/列和第二排/列噪声监测表明,高架道路两侧临路第一排/列和第二排/列敏感建筑昼夜噪声等效声级均超标,主次干道两侧临路第一排/列和第二排/列敏感建筑昼间噪声等效声级基本全部达标,但夜间第一排/列全部超标,夜间第二排/列绝大多数超标。对高架快速路和主次干道两侧不同水平距离处的交通噪声监测表明,昼夜要达到2类声环境标准距离在90~100 m外。建议杭州市交通干线防噪声距离控制为高架和城市快速路红线外不小于50 m,主干道红线外不小于40 m,次干道红线外不小于30 m。通过采用疏水性沥青路面、对高架道路设置隔声屏障、为敏感点安装隔声门窗、加强交通管理等措施,可有效改善道路两侧敏感点室内外声环境质量。  相似文献   

3.
行人过街信号控制路口交通噪声动态模拟与特性分析   总被引:2,自引:0,他引:2  
用实验方法测定了3种不同车型单辆车在参考距离处的噪声排放量及加减速噪声修正值.然后利用微观交通仿真软件为交通噪声的模拟提供实时的交通流数据,并结合车辆噪声排放量和传播衰减模型对行人过街信号控制路口交通噪声进行了动态模拟.最后将模拟结果与实测数据进行了比较分析,结果表明:等效声级Leq的预测误差小于2dB,统计声级L10...  相似文献   

4.
本文对杭州市庆春路整治前后各点位的交通噪声进行了监测。结果表明,整治后各点位的交通噪声等效声级比整治前降低了0.9—8.3dB。长度加权等效声级计算结果表明,整治前长度加权等效声级为71.6dB,属于交通噪声轻度污染水平;而整治后长度加权等效声级为68.6dB,比整治前降低了2.9dB,属于交通噪声较好水平,说明采用疏水沥青路面整治后明显降低了交通噪声。  相似文献   

5.
对杭州上塘-中河高架道路临路第一排敏感点交通噪声监测结果表明,两侧敏感点噪声超标严重。在21个监测点中,昼间超标为8个,最大超标3.9dB,夜间21个点全部超标,最大超标16.2dB。根据噪声污染程度分级,上塘-中河高架道路交通噪声污染属中度污染水平。建设低噪声路面,设置隔声屏障,对敏感点采取安装通风隔声窗等措施,是缓解高架道路交通噪声污染的有效措施。  相似文献   

6.
对杭州上塘-中河高架道路临路第一排敏感点交通噪声监测结果表明,两侧敏感点噪声超标严重。在21个监测点中,昼间超标为8个,最大超标3.9dB,夜间21个点全部超标,最大超标16.2dB。根据噪声污染程度分级,上塘-中河高架道路交通噪声污染属中度污染水平。建设低噪声路面,设置隔声屏障,对敏感点采取安装通风隔声窗等措施,是缓解高架道路交通噪声污染的有效措施。  相似文献   

7.
本文通过对罗湖区内布心路、怡景路交通噪声进行24小时连续监测,统计每小时的等效A声级Leq,分析Leq随时间变化趁势;在不同时段里每次测量20分钟的等效A声级Leq,同时数车流量,探讨交通噪声与车流量的关系.  相似文献   

8.
丁仕芬 《环保科技》2003,9(1):15-18
研究了遵义市中心城区区域环境噪声 (特别是交通噪声 )的变化趋势 ,并对其等效声级 LAeq的特征进行分析 ,提出了降低区域环境噪声的建议。  相似文献   

9.
本文针对呼和浩特市区道路及机动车发展现状,对城区部分主要道路交通噪声进行实测和分析,建立BP人工神经网络交通噪声模型,并对其道路交通噪声进行预测,测试样本的预测值与实测值的等效声级比较接近,平均误差值小于2%.  相似文献   

10.
文章以Cadna/A为工具,分析了交通噪声与车流量和车速的关系,相对车速,交通噪声的增减程度对车流量的变化更为敏感;以车流量与车速的不同组合,模拟了临街高层住宅声环境质量的达标距离,可为城市道路规划提供一定的技术依据;并对交通噪声的垂直分布规律进行了研究,噪声值随高度增加先增大后减小,垂向面上会出现极大值,相对地面道路,高架道路噪声垂向极大值点会下移,极大值点和道路中心的连线与水平地面形成一定的角度.  相似文献   

11.
提出了等效声屏障模型,计算其不同车流量下的A计权声插入损失;采用虚声源法预测双层高架复合道路(即典型的高架复合道路)两侧的声场分布,得出这一复杂声场的特点,结果表明,地面道路噪声对上半空间声场的影响大于上层道路噪声对下半空间声场的影响,从而指出,必须对高架上层和地面采取包括声屏障在内的综合防治措施,才能收到良好效果。  相似文献   

12.
公路声屏障计算机辅助设计系统初步研究与实现   总被引:4,自引:1,他引:4  
基于CAD二次开发技术的基本原理,步骤和方法,研究了声屏障计算机辅助设计系统的框架和结构,利用Visual Ba-sic的ActiveX Automaiton技术,初步开发了基于AutoCAD的公路声屏障计算机辅助设计软件,该软件在输入必要的环境条件和公路噪声的参数后,可自由进行公路交通噪声预测,评价和声屏的设计,并以表格的形式输出交通噪声预测值,以AutoCAD图形格式输出声屏障设计平面图,断面图,立面图等以及有无声屏障时交通噪声的空间等声级曲线图。  相似文献   

13.
结合案例分析交通噪声对临路高层建筑声环境的影响,随着楼层的变化,噪声贡献值呈现抛物线型变化。在第3层~第5层处噪声值达到最大,然后随着楼层增加噪声值逐渐减小;此外低楼层处夜间噪声超标严重。在隔声设计时应重视噪声最大值出现的位置及夜间时段的噪声影响,增加声屏障的高度对提高低楼层隔声效果有较明显作用。对于临路高层建筑,单一的声屏障措施的降噪效果有限且有众多限制因素,采取声屏障+隔声窗措施有较好的降噪效果。  相似文献   

14.
高速公路交通噪声污染调查及防治对策研究   总被引:5,自引:1,他引:5  
通过对现有高速公路交通噪声现状监测和声屏障降噪效果的调查,提出了高速公路交通噪声衰减规律、污染特性及防治对策?  相似文献   

15.
通过对鼓楼立交桥机动车流量的实测。运用高架桥交通噪声预测数学模型,对鼓楼立交桥交通噪声剖面分布和地面分布进行了分析。经过计算声程差,得出合理的利用声屏障技术来解决鼓楼立交桥交通噪声问题是可行的。  相似文献   

16.
针对低噪声路面降噪效果,基于近距法(CPX)获得轮胎/路面噪声,结合交通流特性、路面声学性能和使用状态,运用声能叠加原理和户外声空间传播机理,提出一种基于CPX改进的低噪声路面降噪效果评估模型,并以多种路面组合结构试验段为例,验证该改进评估方法的准确性.改进后的路面降噪效果评估方法,可以更为准确地预测低噪声路面对于路侧边界交通噪声和道路边界外35m环境噪声的降噪贡献量.在道路车道处于不同路面结构或者使用状态下,该评估方法可以为预测评估路面的噪声水平提供方法和依据.结果表明,改进后的评估方法对于道路边界交通噪声的预测误差分别从0.8,1.5和1.1dB下降到0.2,0.1和0.2dB;而对于道路边界外35m处的环境噪声,预测误差分别从1.1,1.8和1.1dB下降到0.1,0.2和0.2dB,有效提高了低噪声路面降噪效果预测评估的准确性.  相似文献   

17.
对杭州市高架快速路两侧的典型建筑群进行了噪声监测,结果表明第一排/列敏感点噪声等效声级均超出4a类标准,昼间超标0.2—5.6dB,夜间超标8.3~15.9dB;第二排/列的噪声等效声级均超出2类标准,昼间超标0.9-5.7dB,夜间超标2.2~8.3dB。典型建筑群的第一排/列对第二排/列的隔声及距离衰减效果为5.1~14.9dB。对交通噪声的防治,可采取设置合理噪声防护距离、建设低噪声路面、设置隔声屏障、建筑物噪声防护和加强交通噪声管理等措施。  相似文献   

18.
深圳城区噪声污染分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对近年深圳市区域环境噪声及道路交通噪声的监测数据分析,发现深圳市交通声源是长期影响城市区域环境噪声的主要因素,其根源在于城市机动车辆增加迅速,路网过密,而配套设施跟不上,造成对城区域环境噪声污染相对集中,城区声环境日趋恶化。   相似文献   

19.
城市噪声管理信息系统中道路交通噪声预测评价的实现   总被引:2,自引:0,他引:2  
牛彦涛  马民涛  柳至和  任杰 《交通环保》2004,25(4):11-13,23
介绍了城市噪声管理信息系统的目标、结构及其功能,详细阐述了采用城市交通干线噪声平均值公式、FHWA模型与GIS集成的方法进行城市道路交通噪声预测评价。该方法可实现城市交通干线噪声平均值及任一噪声预测点噪声值的计算,并能以等声级形式表示道路噪声分布情况。其作为城市噪声管理信息系统的一项重要应用功能,为道路交通噪声预测评价提供了方便有效的工具。对城市噪声管理信息系统的进一步完善作了探讨。  相似文献   

20.
余世清  吴灵鹞  夏阳 《环境科学与管理》2010,35(12):155-157,164
近年来杭州交通噪声投诉点主要分布在高架道路、立交桥和绕城高速附近的高层住户。对其中9个交通噪声投诉点的监测表明,昼间超4 a类标准的有4个,超标范围为0.1~7.6 dB;夜间9个点全部超4 a标准,超标范围为5.4~17.4 dB,夜间噪声超标特别严重。采用低噪声路面,设置隔声屏障,对敏感点安装通风隔声窗以及加强交通噪声管理等对策,可减轻交通噪声对敏感点的影响,从而减少交通噪声的投诉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号