首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
鸟粪石-沸石复合材料对水中镉的吸附性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研究以氧化镁负载沸石回收污水中氮磷得到的鸟粪石-沸石复合材料(STR-NZ)为吸附剂,用于对水体中重金属镉的吸附去除.实验采用SEM-EDS、XRD和FTIR等手段对STR-NZ材料进行表征,并考察了投加量、初始pH和反应时间等对STR-NZ材料去除水中Cd~(2+)的影响.结果表明:氧化镁负载沸石材料主要以鸟粪石沉淀的方式实现对水中磷酸盐和氨氮的回收;STR-NZ对水溶液中Cd~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,当Cd~(2+)的初始浓度为50 mg·L~(-1)时,STR-NZ的最佳投加量为0.2 g·L~(-1),Cd~(2+)最大吸附量为249.35 mg·g~(-1), STR-NZ对Cd~(2+)的吸附动力学符合准二级动力学模型,对Cd~(2+)的等温吸附符合Langmuir等温吸附模型,STR-NZ主要通过Cd_5(PO_4)_3(OH)沉淀的方式实现对水中Cd~(2+)的去除.  相似文献   

2.
利用镁盐为沉淀剂,以鸟粪石沉淀的形式去除养猪废水中的氮、磷,同时采用天然斜发沸石吸附法来提高氨氮的去除效果,以及曝气吹脱CO2方式提高溶液的pH值.考察了沸石投加量、镁盐投加量、曝气时间及初始pH等因素对氨氮和磷酸盐去除效果的影响.结果表明,对于原养猪废水(pH=7.51),在沸石投加量为0.5 g/L,Mg/P摩尔比...  相似文献   

3.
鸟粪石天然沸石复合材料对水中铅离子的去除   总被引:2,自引:1,他引:1       下载免费PDF全文
将一种含鸟粪石的氮磷回收产物(NZ-MAP)应用于水中重金属离子铅的去除.通过XRD、FTIR、SEM/EDS分析手段对NZ-MAP进行表征,并探究投加量、溶液初始pH、反应时间对去除过程的影响.结果表明NZ-MAP材料主要成分为负载有鸟粪石的天然沸石;当投加量为0. 4 g·L~(-1)时,最大吸附量为749. 74 mg·g~(-1),同时NZ-MAP对溶液中Pb~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,其去除机理主要为Pb_(10)(PO_4)_6(OH)_2沉淀作用,且当pH为5. 0时效果最佳.该材料对于水中铅离子的去除过程更加符合准二级动力学模型.为深入探讨共存重金属离子对NZ-MAP去除水中铅离子的影响,发现共存Ni~(2+)和Cu~(2+)对NZ-MAP吸附Pb~(2+)的影响较小,共存Zn~(2+)和Al~(3+)明显抑制了NZ-MAP对Pb~(2+)的吸附.研究显示,NZ-MAP材料可高效去除水中铅离子,可为水体中铅离子的去除提供有效的方法  相似文献   

4.
为了预处理化工厂的高氨氮废水,采用向废水中投加Na2HPO.412H2O和MgCl.26H2O生成磷酸铵镁(鸟粪石)的方法,以去除其中的高浓度氨氮同时获得缓释肥鸟粪石。试验以模拟氨氮废水为研究对象,研究了鸟粪石结晶法回收氨氮的影响因素:反应时间、氨氮初始浓度、pH值、磷酸盐与镁盐投加量对高氨氮废水的去除效果,然后进行不同影响因素的试验,确定了氨氮去除的最佳工艺条件。研究结果表明,鸟粪石结晶法回收氨氮的最佳工艺条件为:反应时间10 min,pH值为9,NH4-N:PO4-P:Mg摩尔比为1:1.05:1.15,NH4-N、PO4-P与Mg的去除率分别为91.52%、99.58%与90.52%;残余浓度分别为90.87、4.96与174.1 mg/L,加入的磷几乎全部回收,无二次污染。预处理的废水进入污水处理厂进一步深度处理。  相似文献   

5.
将一种含鸟粪石的氮磷回收产物(NZ-MAP)应用于水中重金属离子铅的去除。通过XRD、FTIR、SEM/EDS分析手段对NZ-MAP进行表征,并探究投加量、溶液初始pH、反应时间对去除过程的影响。结果表明NZ-MAP材料主要成分为负载有鸟粪石的天然沸石;当投加量为0.4g·L-1时,最大吸附量为749.74mg·g-1,同时NZ-MAP对溶液中Pb2+的吸附量随pH的增大呈先增加后趋于平衡的趋势,其去除机理主要为Pb10(PO4)6(OH)2沉淀作用,且当pH为5.0时效果最佳。该材料对于水中铅离子的去除过程更加符合准二级动力学模型。为深入探讨共存重金属离子对NZ-MAP去除水中铅离子的影响,发现共存Ni2+和Cu2+对NZ-MAP吸附Pb2+的影响较小,共存Zn2+和Al3+明显抑制了NZ-MAP对Pb2+的吸附。研究显示,NZ-MAP材料可高效去除水中铅离子,可为水体中铅离子的去除提供有效的方法  相似文献   

6.
丝光沸石去除生活污水中氨氮的实验研究   总被引:2,自引:1,他引:2  
实验研究了丝光沸石对生活污水中氨氮的吸附行为。结果表明,在投加25g/L丝光沸石,吸附时间40min,pH=6.2的条件下,丝光沸石对浓度为50mg/L的氨氮模拟废水其去除率可达80%以上。Ca~(2+)、Mg~(2+)竞争阳离子在一定程度上抑制丝光沸石对氨氮的吸附。丝光沸石对氨氮的吸附符合朗格缪尔吸附等温线。同时,可用饱和氯化钠溶液对沸石进行再生,此解吸液可重复利用。将丝光沸石用于实际生活污水中氨氮的处理,其去除率达到80%以上。  相似文献   

7.
剩余污泥的水解与氮磷回收   总被引:1,自引:0,他引:1  
传统污水好氧生物处理过程中产生大量剩余污泥,这些污泥有机质中富含大量的氮磷元素。随着剩余污泥的消化并最终处置,大量的氮磷资源被白白浪费。在污泥消化过程中有机态氮磷可以在水解类细菌的水解作用下最终以氨氮和磷酸盐的形式溶出。当水解液中氨氮和磷酸盐达到一定浓度时,投加镁盐并调节pH,生成鸟粪石沉淀。鸟粪石作为一种缓释肥具有良好的经济效益。从资源回收的角度看,对剩余污泥水解酸化阶段研究有利于实现剩余污泥中氮磷资源的有效回收。  相似文献   

8.
郭俊元  王彬 《环境科学》2016,37(5):1852-1857
采用十六烷基三甲基溴化铵(HDTMA)对天然沸石进行改性,研究了沸石的改性条件、改性沸石投加量、废水p H值、反应时间等对HDTMA改性沸石去除废水中对硝基苯酚性能的影响,并分析了吸附动力学和吸附等温线.结果表明,改性沸石对废水中对硝基苯酚的吸附效果明显高于天然沸石,当制备改性沸石的HDTMA溶液的质量分数为1.2%,且其p H值为10时,改性沸石对废水中对硝基苯酚的吸附量达到2.53 mg·g~(-1),远高于天然沸石的0.54 mg·g~(-1).吸附实验中,改性沸石投加量8 g·L~(-1),反应时间90 min,p H=6的条件下,HDTMA改性沸石对废水中对硝基苯酚的去除率高达93.9%.吸附动力学和等温线研究表明,一级动力学方程能够更好地拟合沸石吸附对硝基苯酚的过程(R20.90),不同温度条件下Langmuir等温线拟合方程的相关系数均在0.90以上,数据和方程拟合性较好.  相似文献   

9.
通过批量吸附实验考察了锆负载颗粒沸石改良底泥对水中磷酸盐的吸附特征,并采用分级提取法分析了被改良底泥中锆负载颗粒沸石所吸附磷酸盐的形态分布特征.结果发现,与Freundlich和Dubinin-Radushkevich模型相比,Langmuir模型可以更好地用于描述改良底泥对水中磷酸盐的吸附等温行为.改良底泥对水中磷酸盐的吸附动力学过程可以较好地采用准二级动力学模型和Elovich模型加以描述,膜扩散和颗粒内扩散共同构成了缓慢吸附阶段速率的限制步骤.溶液共存的SO_4~(2-)和HCO_3~-降低了改良底泥对水中磷酸盐的吸附,而共存的Na~+、K~+、Mg~(2+)和Ca~(2+)却增强了对磷酸盐的吸附,且Ca~(2+)的增强效果大于Mg~(2+),后者的增强效果又大于Na~+和K~+.改良底泥对水中磷酸盐的吸附能力明显强于未改良底泥,前者的最大单位吸附量为336 mg·kg~(-1),明显高于后者的最大单位吸附量(215 mg·kg~(-1)).被改良底泥中锆负载颗粒沸石所吸附的磷酸盐主要以较为稳定的NaOH-P和最为稳定的Res-P形态存在,不容易被重新释放出来.上述的研究结果显示,向底泥中添加锆负载颗粒沸石可以显著增加底泥对水中磷酸盐的吸附能力,锆负载颗粒沸石是一种有希望的可以用于底泥内源磷释放控制的底泥改良剂.  相似文献   

10.
采用液相沉淀法将氢氧化镧和天然沸石进行复合,制备得到镧-沸石复合材料,并通过批量吸附实验考察了该复合材料对水中磷酸盐的吸附作用,特别是考察了该复合材料去除水中低浓度磷酸盐的影响因素.结果表明,当制备复合材料时沉淀pH值为5~7或13时,复合材料对水中磷酸盐的吸附能力较差;当沉淀pH值控制为9~12,复合材料对水中磷酸盐的吸附能力较好,且当沉淀pH值由9增加到11时,复合材料的吸磷能力明显增加,继续增加pH值由11~12时,复合材料的吸磷能力基本不变.沉淀pH值为11时制备的镧-沸石复合材料对水中磷酸盐的吸附平衡数据可以较好地采用Langmuir模型加以描述,根据Langmuir模型预测的最大磷酸盐吸附量为44 mg·g~(-1)(磷酸盐溶液pH 7和反应温度30℃);该复合材料对水中低浓度磷酸盐的吸附动力学可以较好地采用准二级动力学模型加以描述.当磷酸盐溶液pH值由3增加到8时,沉淀pH值为11条件下制备得到的镧-沸石复合材料对低浓度磷酸盐的吸附能力增加,继续增加磷酸盐溶液pH值时,该复合材料对磷酸盐的吸附能力下降;与磷酸盐溶液共存的氯离子和硫酸根离子不会抑制该复合材料对低浓度磷酸盐的吸附,而碳酸氢根离子则会略微抑制该复合材料对磷酸盐的吸附;与磷酸盐溶液共存的腐殖酸会抑制该复合材料对水中低浓度磷酸盐的吸附.当磷酸盐溶液pH值为7时,沉淀pH值为11时镧-沸石复合材料吸附磷酸盐的机制主要为配位体交换作用.因此,沉淀pH值为11时制备得到的镧-沸石复合材料适合作为吸附剂去除水和废水中低浓度磷酸盐.  相似文献   

11.
通过直接沉淀-热改性法将纳米氢氧化镁晶体(Mg(OH)_2)负载在生物质炭(BC)上,系统研究了该改性材料(Mg(OH)_2-BC)对模拟废水中氮、磷的固定特性,并探讨了投加量、反应溶液pH、接触时间对吸附过程的影响.结果表明,Mg(OH)_2-BC在投加量为0.3 g·L~(-1),反应溶液初始pH为7,反应时间≥40 min时对氮、磷的固定效果最佳,最大吸附量分别达到58.8、130.0 mg·g~(-1).Mg(OH)_2-BC对氮、磷的吸附过程均符合准二级动力学模型,吸附过程受化学吸附机理的控制.通过SEM、XRD、FTIR等对反应产物进行表征分析,结果表明,Mg(OH)_2-BC对氮、磷的固定机制主要为鸟粪石结晶沉淀,也即化学沉淀.  相似文献   

12.
为了从污染水体中去除磷并有效回收磷资源,本文研究了海绵铁改性前后吸附除磷特性,并构建海绵铁除磷渗滤床,考察了其连续流除磷特性及再生活化方法,并探究再生废液中磷回收生成鸟粪石的工艺条件.结果表明:硫酸改性后的海绵铁对磷的最大理论吸附容量从改性前4.17 mg·g~(-1)提升至18.18 mg·g~(-1).吸附饱和的改性海绵铁,采用1 mol·L~(-1)氢氧化钠解吸和6%硫酸再活化后,能够达到98%的活化率.海绵铁除磷渗滤床在长达约200 d的连续流运行实验中表现出良好的除磷能力,在进水TP=10 mg·L~(-1),HRT=1 h条件下,磷综合去除率达30%~89%,累积单位容积磷吸附量达到6.95 kg·m~(-3).海绵铁碱再生后的废液可以用于回收鸟粪石,其最佳生成条件为:pH=10,n(Mg~(2+))∶n(PO_4~(3-))∶n(NH~+_4)=1.3∶1∶1.1.在最优条件下,磷回收率可以达到97.8%.本研究提供的方法对于污染水体中磷营养元素的去除及回收利用具有理论与实践意义.  相似文献   

13.
为提高微生物电解池(MEC)利用剩余污泥产氢气和磷回收的效率,采用Fe~(3+)、原儿茶酸(PCA)和H_2O_2体系预调理污泥,探究中性PCA/Fe~(3+)/H_2O_2体系的试剂投加量对污泥液相总磷含量和溶解性化学需氧量(SCOD)的影响.在单因素试验的基础上,通过表面响应法(RSM)优化得到Fe~(3+)和H_2O_2投加量分别为12.96 mmol·L~(-1)和0.45 mol·L~(-1),液相总磷含量和SCOD含量实际值分别为(60.14±0.08) mg·L~(-1)和(3357.67±66.37) mg·L~(-1),模拟效果显著.与未处理的剩余污泥MEC反应器出水相比,经过调理后的剩余污泥MEC反应器出水中的总化学需氧量(TCOD)、多糖和蛋白质的去除率分别提高了30.03%、50.16%和97.31%,氢气转化率提升了1.31倍,有效提升了MEC产氢效率.通过鸟粪石结晶回收MEC污泥上清液中的磷,发现在初始pH值为10、Mg~(2+)浓度为0.056 mol·L~(-1)和NH~+_4浓度为0.08 mol·L~(-1)时效果最佳.鸟粪石晶体质量浓度最高可达7.6 g·L~(-1),晶体纯度最大为88.30%,上清液中77.55%的磷以鸟粪石的形式得到回收.在本研究最优化条件下进行中性PCA/Fe~(3+)/H_2O_2体系调理剩余污泥微生物电解池产氢与磷回收全过程中产出经济价值达到2.36元.实验研究最终表明,经过Fe~(3+)/PCA/H_2O_2体系调理污泥可促进污泥中磷的释放和MEC处理污泥的产氢效率,为探究污泥资源化提供了新的研究思路.  相似文献   

14.
磷是造成水体富营养化的重要因素之一,深度去除污染水体中的磷,具有重要的环保意义.为此,本研究比较了多种填料包括海绵铁及其改性填料、钢渣、活性氧化铝、活性炭的吸附除磷特性及动力学,探究了除磷机理,构建了高效除磷渗滤床,考察了动态连续流运行条件下的除磷特性.结果表明酸改性海绵铁具有最高的饱和磷吸附容量,为19.45 mg·g-1,碱改性海绵铁、活性氧化铝、钢渣、未改性海绵铁及活性炭的饱和磷吸附容量分别为10.91、8.70、7.73、3.39和1.34 mg·g-1.在此基础上,利用高效除磷填料酸改性海绵铁和钢渣构建了除磷渗滤床,开展了连续240 d的连续流实验,在磷容积负荷为6 g·d-1·m-3条件下,渗滤床累积磷吸附量达到10215 mg,单位容积吸附量达到1.62 kg·m-3.总之,利用酸改性海绵铁和钢渣构建的除磷渗滤床具有较高的除磷效率和性能,可以作为除磷单元与现有的水污染治理及净化工艺耦合,提高或拓展系统除磷功能.  相似文献   

15.
重金属抗性解磷细菌的磷溶解特性研究   总被引:2,自引:1,他引:1       下载免费PDF全文
从湖南省湘西州花垣县的铅锌矿表层土壤中,筛选出两株具有重金属抗性和解磷特性的细菌T PSB1和T PSB2.通过16S rRNA基因序列比对,分别鉴定为嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)和唐菖蒲伯克霍尔德菌(Burkholderia gladioli).T PSB1和T PSB2在含有难溶性无机磷液体培养基中,其上清液的可溶性磷含量最高分别达到了402.9 mg·L-1和589.9 mg·L-1;在难溶性有机磷固体和液体培养基中,固体平板上均出现解磷圈,而液体培养基上清液中,可溶性磷含量也分别达到了2.97 mg·L-1和4.69 mg·L-1.另外,两株细菌对重金属Zn2+的抗性最高,在其浓度为2000 mg·L-1固体和液体培养基条件下均可以生长,磷溶解浓度分别为114.8 mg·L-1和125.1 mg·L-1.而在含铬和铅的浓度为1 000 mg·L-1的液体培养基中,两株细菌同样表现出重金属抗性.在Pb2+浓度为1000 mg·L-1的液体培养基中,磷溶解浓度分别达到了57.9 mg·L-1和71.7 mg·L-1;而在Cr2+浓度为1000 mg·L-1的培养基中磷溶解浓度分别为60.1 mg·L-1和98.4 mg·L-1.  相似文献   

16.
采用海藻酸钠(SA)凝胶包埋法对海洋硅藻藻粉进行固定化,考察了藻粉用量、海藻酸钠浓度、Ca Cl2质量分数、交联时间及小球粒径对固定化小球吸附铅离子性能的影响,并研究了这种吸附材料对Pb~(2+)的吸附特性.结果表明,固定化海洋硅藻生物吸附剂的最佳制备条件为:藻粉用量5.0 g/100 m L SA、海藻酸钠浓度20 g·L~(-1)、Ca Cl2质量分数0.5%、交联时间1 h、小球粒径2.8 mm左右.Langmuir等温吸附模型能够较好地描述固定化小球吸附对Pb~(2+)的等温吸附特征,R2为0.9983,最大理论吸附量为833.33 mg·g~(-1).准二级动力学模型能够较好地拟合固定化小球吸附Pb~(2+)的动力学过程,理论平衡吸附量为714.29 mg·g~(-1),与实验所得平衡吸附量706.55 mg·g~(-1)较为接近.固定化小球吸附Pb~(2+)的适宜初始p H值为4~5.Na Cl、Ca(NO3)2、Mg(NO3)2对固定化小球的吸附性能有一定的促进作用.本研究所制固定化海洋硅藻球形吸附材料对Pb~(2+)的吸附容量明显优于大部分研究所报道的固定化生物吸附剂,是一种很有潜力的生物吸附材料.  相似文献   

17.
多种材料对水中氨氮的吸附特性   总被引:7,自引:2,他引:5       下载免费PDF全文
针对黑臭水体中氨氮难以去除的问题,选取沸石、麦饭石、硅藻土、膨润土和活性炭这5种材料,通过实验考察所选材料对水中氨氮的吸附性能.结果表明,准二级动力学方程更加适用于5种材料的数据拟合,得出最大吸附量分别为2. 067 3、0. 998 2、0. 758 0、1. 748 6和1. 016 0 mg·g~(-1),且接近实验值,因此化学吸附是主要的吸附方式;采用Langmuir和Freundlich等温方程对数据进行拟合,得出硅藻土更适合Langmuir等温方程,属于单层吸附,其他4种材料则更加适合Freundlich等温方程为多层分子吸附,且5种材料的吸附都为有利吸附;通过投加量实验得知,沸石、硅藻土、膨润土和活性炭对氨氮去除率随投加量增加而升高,最大去除率分别为100%、10. 46%、49. 25%和16. 87%,而麦饭石先升高后降低,投加量为0. 4g时,取得最大值为48. 85%;在p H为4~10,沸石和麦饭石吸附量先增加后减少,而硅藻土、膨润土和活性炭的吸附量缓慢升高; 5种材料氨氮解吸量随初始浓度升高而升高.  相似文献   

18.
氢氧化钙调控剩余污泥碱性发酵,可有效提高发酵液原位合成层状双金属氢氧化物(LDHs)提取短链脂肪酸(SCFAs)的效率.本文拟利用氢氧化钙和氢氧化钠混碱调控剩余污泥碱性发酵,提高发酵过程SCFAs产量,进一步提高SCFAs提取效率.通过配置不同氢氧化钠和氢氧化钙混合比例的碱液,用于调控剩余污泥碱性发酵实验,发现混碱比例为25∶75时,可避免钙离子对污泥水解产酸影响,发酵液中SCFAs浓度达到6581.4 mg·L~(-1)(以每COD计,下同),是空白对照组(4179.4 mg·L~(-1))的1.6倍.同时,碱液提供的钙离子可将污泥发酵过程释放的无机阴离子去除,CO■、PO■浓度分别低至3.7 mmol·L~(-1)和0.5 mg·L~(-1).利用氢氧化钠和氢氧化钙调控剩余污泥进行混碱厌氧发酵,可有效提高SCFAs的产量,消除主要无机阴离子对发酵液原位合成层状双金属氢氧化物(LDHs)提取SCFAs的干扰,合成的LDHs中SCFAs的含量为52.3 mg·g~(-1) LDHs,是空白组(18.9 mg·g~(-1)LDHs)的2.8倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号