首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
上海降水中氢氧同位素特征及与ENSO的关系   总被引:8,自引:4,他引:4  
基于收集2014年8月至2015年8月上海70个降水样品,分析上海降水同位素特征与温度、降水量的相关关系,分析不同时间尺度下降水中δ~(18)O、氘盈余与ENSO事件的联系.结果表明上海地区大气降水中δD与δ~(18)O冬春较高,夏秋较低.上海大气降水线方程截距和斜率比全球降水线方程偏小,可能是因为降水过程中受到不平衡的二次蒸发.在不同的时间尺度下,上海地区降水中δ~(18)O与气温和降水量具有不同的相关关系,冬季存在着较弱的温度效应,而全年呈现出较显著的降水量效应,受大气环流过程影响明显.取样期间,降水中δ~(18)O与d值(过量氘)清晰记录了La Ni1a向El Ni1o之间的过渡,拉尼娜期间,降水中δ~(18)O与d值偏负;El Ni1o期间,δ~(18)O与d值偏正.  相似文献   

2.
温艳茹  王建力 《环境科学》2016,37(7):2462-2469
根据2015年4~10月重庆地区61场降水稳定同位素资料与相关气象资料,分析了不同时间尺度下重庆大气降水中氢氧同位素(δD、δ~(18)O)、过量氘(d)的变化特征以及它们与降水量、温度及厄尔尼诺/拉尼娜和南方涛动(ENSO)的关系.结果表明:1研究区大气降水线方程为:δD=8.28δ~(18)O+12.34(r=0.99,n=61),其斜率和截距与中国东部季风区的多处南方地区大气降水线方程的斜率和截距相似.2研究区大气降水中氢氧同位素和d均出现夏半年低、冬半年高的季节变化,影响重庆降水中氢氧同位素变化的主要原因为不同季节降水的水汽来源及气团性质的差异.3监测时段内研究区大气降水中δ~(18)O与温度、降水量相关性不显著(r=0.03;r=0.12),但却敏感响应了大气环流过程,表现出与ENSO正相关.大气降水中δ~(18)O和过量氘(d)清晰记录了2014~2015年LaNia和ElNio的转换过程.ElNio期间研究区域大气降水中δ~(18)O和d明显偏重;而在LaNia期间,δ~(18)O和d偏轻.  相似文献   

3.
大气降水稳定同位素受温度、雨量、海拔高程、水汽源等多种因素控制,进而影响洞穴水及沉积物的同位素变化.为了更好地认识我国南北交汇带季风敏感区洞穴水对降水的响应过程,本研究分析了2015年8月4~6日河南栾川县鸡冠洞强降雨和洞内4处地下水点样品,并结合2009~2015年栾川地区近6年大气降水氧氘同位素数据研究发现:1采用HYSPLIT模型可以将鸡冠洞强降雨划分为不同水汽来源的2个阶段:高空来自南中国海的水汽以及近地面来自内陆局地蒸发的水汽,并且可以记录在单场降雨期间雨水的δ~(18)O变化特征上.2近地面来自内陆局地蒸发水汽的蒸发过程一定程度上掩盖了温度效应,并使局地大气降水线的斜率、截距和雨水过量氘均减小.3此次降雨期间鸡冠洞洞穴滴水δ~(18)O特征主要响应夏季风海源水汽的降水;鸡冠洞洞穴滴水对降雨响应最快,间隔时间约为3 h,滴水δ~(18)O随滴率升高变重,之后缓慢变轻;地下河具有相似的模式,稍有滞后;靠近洞口的池水反映出不同阶段的雨水δ~(18)O变化的差异.  相似文献   

4.
基于河南省禹州市马沟洞2支石笋(MG-1与MG-40)24个~(230)Th年龄和1988个氧同位素数据,建立了研究区13.1—4.9 ka BP分辨率为2—14 a的石笋氧同位素时间序列。马沟洞石笋δ~(18)O的时间序列揭示季风降水在11.2—9.1 ka BP时段在波动中逐渐增加,9.1—4.9 ka BP季风降水显著波动但无明显长期趋势变化。YD事件、9.3 ka事件、8.2 ka事件记录与其他石笋δ~(18)O记录的一致性揭示末次冰消期—早全新世百年—千年尺度气候突变事件的大范围存在和共同的驱动因子。马沟洞全新世大暖期的δ~(18)O记录中检测出的13个数十年尺度的弱季风事件进一步证实全新世大暖期气候的不稳定性。与大气⊿~(14)C记录、NGRIP冰芯δ~(18)O记录的对比及周期分析揭示,太阳活动引起的太阳辐射变化和北半球高纬气候状况共同影响着亚洲季风的变化,ENSO活动及气候系统内部的相互作用也对东亚夏季风降水产生重要的影响。  相似文献   

5.
托来河流域不同海拔降水稳定同位素的环境意义   总被引:8,自引:7,他引:1  
为了探讨祁连山中段托来河流域不同海拔降水稳定同位素的环境意义,依据该流域托勒站(3 367 m)和嘉峪关站(1 658 m)的降水样品和气象数据,分析了降水稳定同位素的时间变化、局地大气水线、海拔变化,讨论了降水稳定同位素与温度、降水量、平均水汽压和相对湿度的关系.结果表明,研究时段内托勒站和嘉峪关站降水稳定同位素具有一定的季节变化特征,托勒站表现为夏秋较高值,冬春季为较低值,与托勒不同的是,嘉峪关站春季较高,其他季节较低.嘉峪关站降水δ~(18)O和d-excess值展现出显著的反向变化趋势,托勒站则不显著,随海拔升高对应的相关系数呈下降趋势,反映了内陆河流域低海拔地区存在较强的云下蒸发,同时高海拔地区受局地水汽再循环的强烈影响;从嘉峪关到托勒站大气降水线的斜率和截距都明显升高,表现出从低海拔到高海拔的增加趋势;处于高海拔地区托勒站的温度效应比低海拔地区的嘉峪关站更显著,对于气温在10℃以上的降水事件而言,托勒站δ~(18)O与气温呈显著正相关,嘉峪关站则表现出相反的变化趋势,可能是嘉峪关站云下蒸发对高降水量事件稳定同位素的富集作用减弱,使得呈现降水量效应;从托勒站到嘉峪关站,δ~(18)O和dexcess与平均水汽压的正相关关系减弱,变化幅度也明显减小,原因可能是从高海拔到低海拔地区,水汽压升高,饱和水汽压升高,降水难以形成,降水量较小,降水稳定同位素受云下蒸发影响作用明显,δ~(18)O和δD偏正,高海拔地区受局地水汽再循环的作用明显,δ~(18)O和δD偏负;嘉峪关站降水δ~(18)O与平均相对湿度呈不显著正相关,托勒站则相反.研究结果为托来河流域同位素水文过程研究提供了理论依据.  相似文献   

6.
滇南蒙自地区降水稳定同位素特征及其水汽来源   总被引:9,自引:5,他引:4  
大气降水中δD、δ~(18)O值具有规律性变化特征,与诸多气象要素及水汽来源之间存在密切联系.根据2009年1月至2011年12月对滇南蒙自地区大气降水的连续性采样,结合欧洲中期数值预报中心(ECMWF)以及美国国家环境预报中心/美国国家大气研究中心(NCEP/NCAR)的再分析资料,并利用HYSPLIT_4.8后向轨迹追踪模型,分析了天气尺度下蒙自地区大气降水中δD、δ~(18)O的变化特征,探究了降水稳定同位素与温度、降水量、风速及水汽来源之间的关系.结果表明,蒙自地区降水中δD、δ~(18)O值表现出明显的季节变化,即干季偏高,湿季偏低;降水中δ~(18)O与温度、降水量之间存在显著负相关,但与不同气压层(300、500、700、800 h Pa)风速之间呈现出显著正相关,表明风速也是影响降水中δ~(18)O变化的一个重要因素;随着降雨等级的增加,其大气水线的斜率与截距也增大,说明降水稳定同位素存在一定程度的云底二次蒸发效应;水汽输送轨迹显示,干季降水的水汽主要来自于西风带输送及局地再蒸发水汽,而湿季降水的水汽主要来源于远源海洋水汽的输送,并且在受台风影响期间,降水中δD、δ~(18)O值更加偏负.  相似文献   

7.
不同水汽来源对湖南长沙地区降水中 δD、δ18O的影响   总被引:4,自引:1,他引:3  
根据2010年在长沙地区进行降水收集和气象要素观测的资料,分析了该地区降水中δ18O与温度、降水量之间的关系,揭示了降水中δD、δ18O的变化特征,讨论了水汽输送对降水中δ18O变化的影响。结果表明,在天气尺度下,长沙地区大气降水中δ18O与降水量、温度之间存在显著的负相关关系,即该地区降水中δ18O的变化具有显著的降水量效应及反温度效应。对长沙地区的降雪样和降雨样进行线性回归,得出大降水事件和降雪的大气降水线具有较大斜率和截距。随着降水量的减小,大气降水线方程的斜率和截距也逐渐减小,这主要由于小降水事件的雨滴在降落过程中受到二次蒸发强烈,同位素分馏强烈。利用HYSPLIT模式追踪该地区气流的轨迹发现,在季风降水期间(5—9月),δ18O值偏低的水汽主要来自孟加拉湾、南海洋面与西太平洋海区;在非季风降水期间(10—4月),δ18O值偏高的水汽主要来自西风带携带的水汽和局地水汽环流。  相似文献   

8.
分析了我国29个GNIP站1961—2015年逐月降水中δ~(18)O与局地气象要素(近地面的气温、降水量和大气可降水量、外向长波辐射以及500 hPa高度的风速)和大尺度环流因子(Nino 4区海表温度距平及南方涛动指数)的关系,并基于层次聚类分析和逐步回归分析方法,讨论了我国降水中δ~(18)O的分区,计算了区内降水中δ~(18)O依各气象因子的回归方程.结果表明,秦岭-淮河一线南北两侧站点降水中δ~(18)O与气象因子之间的关系差异显著,是我国的一条重要的降水稳定同位素环境效应分界线.我国降水中δ~(18)O可以分为3个区域,即北部区(包括西北和东北地区)、中部过渡区(含华北及青藏地区)和南部区,其中北部区和中部过渡区的分界线大致与我国西北地区和北方地区的分界线吻合,中部过渡区与南部区大体与我国北方地区和南方地区的分界线相一致.不同地区控制降水中δ~(18)O的气象因子存在差异:北部区为温度,中部过渡区为温度、500 hPa高度风速以及外向长波辐射,南部区是500 hPa高度的风速.研究结果对于认识我国大气降水中稳定同位素空间分布的特征及其内在机制具有重要意义.  相似文献   

9.
本研究基于上海地区2016年9月~2017年8月期间采集的大气降水样品,测定并分析了雨水中δD、δ18O和δ17O特征,进一步探索氘盈余(d值)和17O盈余的环境意义。结果显示:(1)降水同位素年内变化明显,δD、δ18O和δ17O同位素比值冬春偏重、夏秋偏轻,单次降水过程中同位素呈不断贫化的趋势;(2)δ18O存在降雨量效应和反温度效应:大气降水线方程、d值显示上海地区气候整体温和湿润,蒸发作用相对较小;冬春季降水较少,相对湿度较小,同位素较富集;夏秋季降水较多,相对湿度较高,同位素较为贫化;(3)综合分析17O盈余,发现上海地区大汽降水的水汽处于从海洋向陆地转移的过程当中,在运移过程中受到沿途陆表蒸发,且雨季的大气降水来源主要为海洋气团,干季主要来源于内陆,以本地蒸发为主。  相似文献   

10.
基于对成都地区2016年9月至2017年10月采集的113场次降水样品氢氧同位素的分析,发现大气次降水中δD、δ~(18)O、~(17)O、d-excess和~(17)O-excess有显著的季节性变化,旱季高雨季低,反映了该地区旱、雨两季水汽来源不同;地区大气降水线斜率和截距都偏小,表明成都降水来源于具有不同稳定同位素比率的源地,且雨滴在降落过程中发生了二次蒸发;三氧同位素大气降水线(δ'~(17)O=0. 528 9δ'~(18)O+0. 007 5)斜率介于海洋气团(0. 529)与干空气(0. 518)之间,表明成都地区处于海洋气团向内陆迁移的路径上; d值接近全球平均值,而~(17)O-excess值远较海水大,表明成都的水汽来源由海洋气团主导,且到达该地区的过程中同位素经历了严重的富集; d-excess在旱季出现的极低值可能是受到了人工降雨的影响,~(17)O-excess除了与水汽源地的相对湿度有关外,还会受到上游气团对流作用的影响,此外,成都当地的气象因素对不同季节次降水的~(17)O-excess值有不同程度的影响.  相似文献   

11.
长江源区降水氢氧稳定同位素特征及水汽来源   总被引:6,自引:4,他引:2  
基于长江源区冬克玛底流域2014年5~10月连续采集的73个降水同位素数据,结合相关气象资料,分析了降水中δD、δ~(18)O及氘盈余(d-excess)变化特征,讨论了δ~(18)O与气温、降水量的关系,利用HYSPLIT模型追踪流域降水的水汽来源并估算不同水汽来源对降水量的贡献比例.结果表明:研究区降水中δ~(18)O和δD变化范围分别为-26.5‰~1.9‰和-195.2‰~34.0‰,且δ~(18)O和δD值随时间变化波动较大,与不同来源水汽输送有直接的关系;区域降水线的斜率和截距均大于全球大气降水线,与青藏高原北侧地区的降水线相近;不同降水类型中的δ~(18)O和δD的关系差异显著,主要与水汽来源和形成降水时的气象条件有关;由于受局地蒸发水汽及水汽输送过程影响,流域大气降水d-excess值整体上相对偏大;研究区的降水同位素存在显著的降水量效应,但不存在温度效应,表明降水量对大气降水中稳定同位素含量的控制作用更强;水汽来源轨迹表明,研究区大气降水水汽来源主要有西南季风携带的海洋性水汽、局地蒸发水汽及西风输送水汽,对降水量的贡献比例分别为43%、36%和21%.该研究结果有助于进一步了解长江源头区冬克玛底流域的大气环流特征及水循环过程.  相似文献   

12.
利用全球降水同位素观测网(GNIP)所提供的数据,研究了位于长江流域的南京、武汉、成都、昆明4个站点大气降水δ~(18)O及其相关要素的时空分布特征。对长江流域4站点大气降水中的δ~(18)O与气温、降水量、在不同时间尺度下的相关关系进行了分析与研究,提出长江流域的大气降水线方程并与全球及我国大气降水线相比较。结果表明,4站点δ~(18)O与δD年平均值波动较小,而多年月平均值波动较大,其中昆明波动最大。季节尺度下,长江流域大气降水中δ~(18)O在干季具有显著的温度效应,在湿季具有降水量效应;年尺度下,长江流域具有降水量效应。与全球大气降水线相比,长江流域大气降水线的斜率与截距都要偏小,尤其是截距偏低很多。利用HYSPLIT模型对南京与昆明站点1991年夏季水汽路径进行聚类分析,其分析结果与大气降水线及氘盈余分析结果一致,即站点存在不同水汽来源。  相似文献   

13.
根据长沙地区于2014年11月12日~2015年4月13日监测的大气水汽中δ18O和δ2H及观测的气象要素,分析了长沙近地面水汽中δ18O和δ2H变化特征以及与温度、绝对湿度、降水量的关系.结果表明:1长沙大气水汽中δ18O和δ2H季节变化显著,在冬季表现为高值.冬季大气水汽中δ18O和δ2H与绝对湿度存在正相关关系.δ18O和δ2H在监测期间存在较大波动,尤其是有降水事件发生时.降水事件对长沙大气水汽中δ18O和δ2H的变化影响显著,水汽稳定同位素的低值与降水事件有关.2不同天气条件下长沙大气水汽中δ18O和δ2H的日变化实质上与绝对湿度有关,而绝对湿度的大小又主要受控于局地的蒸散发和大气湍流的强度.单次降水过程中大气水汽δ18O和δ2H存在显著的类似于降水中稳定同位素的"降雨量效应".3长沙大气水汽中δ18O和δ2H总是低于降水中δ18O和δ2H,逐日变化基本一致,它们之间的平均差值分别为8.6‰和66.82‰.4长沙冬半年大气水汽线方程为δ2H=7.18δ18O+10.58,水汽线的斜率和截距总是小于同时段大气水线的斜率和截距,春季水汽线的斜率和截距明显高于冬季水汽线的斜率和截距.  相似文献   

14.
利用δ15N-NO3-和δ18O-NO3-示踪北京城区河流硝酸盐来源   总被引:2,自引:2,他引:0  
为定量化识别北京城区河流硝酸盐来源,采用δ~(15)N-NO~-_3和δ~(18)O-NO~-_3双同位素示踪法对北京城区河流河水硝酸盐的氮氧稳定同位素组成进行分析,利用稳定同位素混合模型追溯北京城区河流硝酸盐来源,并评估各污染源的贡献率.结果表明:1北京河流无机氮污染以硝酸盐氮(NO~-_3-N)污染为主,且河流下游硝酸盐氮污染较为严重.2北京城区地表河流δ~(15)N-NO~-_3值范围为6.26‰~24.94‰,δ~(18)O-NO~-_3值范围为-0.41‰~11.74‰;下游δ~(15)N-NO~-_3值比上游大.3根据稳定同位素混合模型,北京河流中硝酸盐贡献率平均值分别为:粪肥及生活污水61.2%、土壤有机氮31.5%、大气沉降7.3%.  相似文献   

15.
稳定同位素示踪技术是河流水文过程研究的重要方式,可以用来判定河流补给的来源、研究河流与其它水体相互作用、示踪水文循环过程等。本文采用TC/EA-IRMS分析法对拉萨河水体的氢氧同位素进行测定,分析了δD和δ~(18)O的含量及空间分布特征,并分析了拉萨河的同位素效应,包括与大气降水氢氧同位素的关系、氢氧同位素的沿程变化特征、氘过量参数沿程变化、高程效应及大陆效应等。结果表明:拉萨河水体受补给来源、大陆效应、高程效应等因素影响,其水体氢氧同位素也呈现出不同的特征。整体而言,拉萨河水体δD和δ~(18)O随沿程距离增大而下降;δD和δ~(18)O均分布在全球大气降水线和青藏高原东部大气降水线附近,表明大气降水是拉萨河流域主要的补给来源;拉萨河水体的氘过剩参数均大于10‰,且远超全球大气降水线对应的氘过剩参数,说明拉萨河可能存在接受氢氧同位素较贫化的冰雪融水补给。  相似文献   

16.
粤西云浮市大气降水δ~(18)O与水汽来源的关系   总被引:3,自引:1,他引:2  
2005-04-05~2006-04-01期间在粤西云浮市采集了59次具有显著天气过程的大气降水样品, 并进行了稳定氧同位素测试, 结果显示此期间云浮市大气降水中δ18O值波动于-12.47‰~-0.18‰之间, 平均值为-4.91‰; 夏秋季(5~9月)的δ18O值相对偏低, 多数在-10.00‰~-5.00‰, 平均-6.30‰; 冬春季(11月~次年4月)的δ18O值相对偏高, 多数在-3.00‰~-1.00‰, 平均-2.20‰. 这些δ18O值与它们相应的气温、水汽压(e)呈较为显著负相关, 相关系数(R)均达-0.60, 而与降水量的负相关性较差, 相关系数(R)为-0.33. 与大致同时期的广州降水中δ18O月平均值相比, 云浮降水中δ18O呈相对低值, 可能与云浮市受到了较强的西南季风叠加影响有关. 后推气流轨迹的结果表明, 这些大气降水δ18O值在前汛期(4~6月)、后汛期(7~9月)和非汛期(10月~次年4月)中的变化很大程度上受不同水汽来源决定, 表明降水δ18O值在一定程度上具有指示水汽来源的作用: δ18O值偏高的大气降水其水汽可能主要来源于西太平洋的副热带海区(包括我国南海海域)的变性热带太平洋暖气团; 而δ18O值偏低的大气降水其水汽则来源于印度洋和孟加拉湾的变性热带海洋气团.  相似文献   

17.
柴达木盆地东部降水氢氧同位素特征与水汽来源   总被引:8,自引:4,他引:4  
朱建佳  陈辉  巩国丽 《环境科学》2015,36(8):2784-2790
稳定性氢氧同位素可以作为示踪剂来判断大气降水的水汽来源.本研究选择柴达木盆地南部的格尔木和东北部的德令哈两个区域,在分析这两个地区2010年6~9月降水同位素组成特征、时间变化以及降水中δD与δ18O关系的基础上,探讨柴达木盆地降水的水汽来源.结果表明:1格尔木和德令哈地区6~9月大气降水线分别为,格尔木:δD=7.840δ18O-4.566(R2=0.918,P0.001),德令哈:δD=7.833δ18O+8.606(R2=0.986,P0.001).两地区6~9月大气降水线的斜率和截距均低于全球大气降水线,而格尔木地区的截距仅为-4.566,反映出格尔木极其干旱的气候特点.2格尔木降水的δ18O在7月初较高,表现出一定的重同位素富集;在7月中下旬至9月初,δ18O较低;9月中下旬更低.德令哈降水的δ18O在6~8月相对较高,9月中下旬较低.3格尔木和德令哈地区水汽来源有一定的差异,格尔木地区可能是西南季风能够到达青藏高原的北部边界,德令哈地区水汽来源主要为局地蒸发.  相似文献   

18.
我国东北地区大气降水稳定同位素特征及其水汽来源   总被引:14,自引:5,他引:9  
依据全球大气降水同位素观测网络(GNIP)中我国东北地区的月大气降水氢氧稳定同位素资料,并结合相关气象资料,分析了该地区大气降水稳定同位素时空分布特征及其影响因子,并建立了局地大气水线方程.结果表明,东北地区大气降水中δ18O值总体上较低,在时间变化上,表现为冬低夏高;从空间分布来看,由南至北加权平均δ18O值呈减小趋势;降水δ18O与温度线性关系显著,而与降水量则不存在线性关系,利用降水δ18O与温度、降水量、高程、经度和纬度等气候因子建立的多元线性回归关系可以对降水δ18O进行定量估算;采用HYSPLIT 4.9模型对GNIP观测点水汽来源进行追踪,气团聚类轨迹表明,该区全年有两条水汽路径,分别为西风带输送的大西洋、极地北冰洋冷湿水汽和太平洋暖湿水汽.  相似文献   

19.
采集厦门地区6个站位春、夏和冬季的大气降水样品,并用稳定同位素质谱仪分析降水样品中的氢氧同位素值(δD和δ18O).结果表明:厦门地区大气降水中δD和δ18O值春季最高(-7.86‰±8.07‰和-2.18‰±0.80‰),夏季最低(-61.17‰±4.85‰和-8.42‰±0.62‰).本文同时利用HYSPLIT模型对不同季节厦门地区水汽来源及输送路径进行追踪,发现厦门地区夏季降水主要受到来自南海及西太平洋气团的影响,期间降水量大,δD和δ18O值较低.厦门地区大气降水线方程为δD=8.35δ18O+12.52(R2=0.906),与全球降水线方程(δD=8.17δ18O+10.56)相比,截距及斜率略有偏高.厦门地区氘剩余值(d值)波动范围较大(-5.13‰~32.25‰),说明厦门地区降水的水汽来源较为多样,降雨条件较为复杂.厦门地区降水中d值表现为冬季高,春季次之,夏季低的季节性变化特征.年尺度下,厦门地区氢氧同位素与降水量在呈显著的负相关关系(r分别为-0.477和-0.369,p0.01).  相似文献   

20.
兰州市两场典型降水事件稳定同位素特征及其水汽来源   总被引:2,自引:0,他引:2  
为了加深对短时间尺度下降水同位素变化规律的认识,利用兰州市2019年夏季典型的长历时弱降水(6月26~27日)和短时强降水(7月28日)事件短时间尺度(10 min和30 min)的连续样品,结合HYSPLIT模型对降水氢氧稳定同位素的变化特征及其机制进行分析.结果表明,降水初始阶段,二次蒸发效应使事件内连续降水的大气水线(SMWL)斜率偏小.连续样点大都分布在GMWL和LMWL上方,且SMWL的截距都大于局地年平均过量氘(8.13),说明降水一定程度上经历了水汽再循环. 6月26~27日连续2 d的降水事件,第1 d的δ~(18)O呈"L"型变化,第2 d呈波动变化,δ~(18)O不遵循降雨量效应. 7月28日,δ~(18)O呈平稳下降趋势,变化范围超过9‰. 6月26日, 500 m高度层水汽输送路径整体较短, 27日以局地水汽蒸发为主. 7月28日降水的水汽来源变化不明显,气团较单一,同位素值无明显波动.因此,对于短时间尺度下的单次降水事件,水汽来源的异同也是降水期间同位素变化的原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号