首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
基于多卫星遥感的东北地区霾污染时空特征研究   总被引:2,自引:0,他引:2  
利用多卫星(MODIS、CALIPSO、VIIRS)观测的气溶胶产品、地面空气质量监测数据和气象资料,获取了东北地区2006—2015年期间气溶胶光学厚度(AOD)的季节和年际变化特征,并对2014年10月14日东北地区一次典型重霾污染过程的特征及其潜在传输路径进行了深入讨论.研究结果显示,自2008年起东北地区灰霾污染范围扩大且污染程度加剧,呈带状空间分布(营口-长春-哈尔滨);区域内AOD值呈春、秋和冬季高,夏季低的时间变化特征.采用CALIPSO星载激光雷达数据与MODIS、VIIRS卫星获取的AOD开展综合分析,可有效弥补MODIS、VIIRS卫星因冬季积雪亮地表干扰所产生的AOD缺省区域,增强对长期积雪覆盖地区霾污染的时空特征分析能力.与反映霾污染空间分布范围更广的VIIRS卫星相比,MODIS卫星AOD值与东北地区地面观测获取的AQI、PM10和PM2.5相关系数更高,分别为0.89、0.73和0.83.进一步研究结果显示,秋末冬初东北地区的霾污染事件与农作物秸秆焚烧有关,同时,华北地区灰霾污染可跨越渤海湾传输至东北地区,进一步形成更大尺度的带状区域污染.  相似文献   

2.
北京2013年1月连续强霾过程的污染特征及成因分析   总被引:10,自引:0,他引:10  
以北京市2013年1月份连续灰霾天气中10~16日的强霾污染过程为例,利用MPL-4B型IDS系列微脉冲激光雷达观测资料由Fernald算法反演得到此次污染过程中气溶胶垂直分布特性,结合地面气象条件和天气形势分析污染原因,并讨论与气溶胶地面监测数据的符合性.结果表明:此次连续强霾过程污染严重,观测时段内89.4%的时间出现霾,39.8%的污染时段达到重度霾级别,其中大气地表消光系数与PM2.5浓度变化呈显著线性相关关系,相关系数达0.95.研究过程内,大气边界层在91%的时段低于500m,平均仅为293m,低边界层抑制了污染物的有效扩散;近地面垂向各高度的消光系数持续达到1.5km-1以上,对比气溶胶退偏比发现城市上空的大气强消光为气溶胶颗粒物和大气水分共同导致;气溶胶光学厚度(AOD,532nm)较大,有83.6%的时段超过1,且受相对湿度影响较大,相对湿度偏小时段的AOD值主要为气溶胶颗粒贡献,相对湿度较大时段,细颗粒物吸湿增长导致AOD受大气水分干扰显著.连续静稳的天气形势和区域污染是导致此次强霾发生和持续的主要原因,高湿天气则加剧了灰霾状况.  相似文献   

3.
针对气溶胶含量随高度呈负指数递减这一假设存在的问题,通过对Mie散射激光雷达探测资料的系统分析和总结,论证了Logistic曲线能更好地表征大气消光系数在边界层内的垂直演变特征.在对MODIS卫星遥感气溶胶光学厚度(AOD)系统偏差进行校正的基础上,将大气消光系数的模拟值与实测值之间离差平方和最小作为目标函数,利用小波协方差法计算混合层高度,以订正后的AOD和混合层高度作为约束条件,再用免疫进化算法优化目标函数中的参数,据此提出了MODIS卫星遥感AOD反演近地面"湿"消光系数的新模型.基于成都市2013年6月—2014年5月的MODIS卫星遥感AOD资料及同时次的Mie散射激光雷达探测数据和地面细颗粒物浓度资料的实例分析表明,新模型反演得到的近地面大气"湿"消光系数与近地面细颗粒物质量浓度之间的相关系数在四季均能稳定在0.6以上.  相似文献   

4.
为探究四川盆地冬季污染天气过程气溶胶分布和垂直气象场特征,利用MODIS MCD19A2大气气溶胶光学厚度数据、实况格点融合分析数据、环境空气质量监测数据以及探空气象观测数据,对四川盆地2017年12月19日—2018年1月3日以及2018年1月11—24日两次污染天气过程的气溶胶光学厚度(AOD)空间分布以及气象条件进行分析.结果表明:①四川盆地冬季两次污染天气过程中,成都市一直为AOD高值区.②霾天气过程(2018年1月11—23日)中,四川盆地AOD高值区分布区域更广,高低空环流形势稳定,混合层高度偏低,近地层逆温和高湿环境均有利于霾天气的形成与持续.③沙尘天气过程(2017年12月29日—2018年1月1日)中,四川盆地AOD值呈“南高北低”的空间分布特征;冷空气携带沙尘气溶胶自北向南影响四川盆地,对混合层高度有小幅抬升作用,空气质量得到轻微改善;但混合层高度始终偏低,干冷空气使近地层相对湿度下降,本地气溶胶粒子数减少,但沙尘气溶胶粒子数增加,伴随近地层逆温稳定维持,有利于沙尘天气的形成与持续.研究显示,冬季四川盆地混合层高度偏低、近地层逆温稳定维持,均不利于气溶胶粒子垂直扩散,导致四川盆地易出现污染天气.   相似文献   

5.
论文研究四川省2000—2014年气溶胶光学厚度的时空演变趋势,并综合自然和人为两方面因素,从区域尺度上对四川省气溶胶光学厚度演变的驱动力进行定量研究,更进一步从像元尺度上分析驱动力的空间分异。结果表明:1)四川省以中部盆地为气溶胶光学厚度高值中心区且增长趋势最为明显,川东平行岭谷值较小且有轻度减少趋势,川西高原、川西南山地值最小,但有轻度增长趋势;2)区域尺度上,对气溶胶光学厚度驱动力主导因子进行定量研究,建立了气溶胶光学厚度(AOD)与GNP、降水量和归一化植被指数的多元回归模型,即AOD=0.849+0.567×GNP-0.909×降水量-0.077×归一化植被指数,该模型较好地体现了在更为宏观的区域层面上四川省气溶胶光学厚度演变驱动力的定量作用;3)像元尺度上,驱动力的空间分异表现为中部盆地气溶胶光学厚度主要受人为和地表因素影响,川东平行岭谷、川西高原和川西南山地气溶胶光学厚度受气象和地表因素影响较多。由于川渝地区秋冬季多云雾,有效的气溶胶卫星观测数据偏少,因此如何在秋冬季获取气溶胶光学厚度有效数据是未来应加强的工作;在驱动力因子方面人为因子的选取划分可以进一步具体化;由点到面的插值会影响驱动力因子数据的精度,故如何通过高精度的插值方法来提高数据的精度亦是未来提高驱动力定量研究准确性的发展方向。  相似文献   

6.
文章利用MODIS L1B数据和NASA的V5.2气溶胶光学厚度反演算法反演了长江三角洲地区的高空间分辨率的气溶胶光学厚度,反演结果与CE-318地基观测数据的进行对比验证,两者的相关系数在0.7以上,反演结果精度良好,表明MODIS反演高空间分辨率气溶胶光学厚度的可行性。利用反演的高空间分辨率气溶胶光学厚度,结合长江三角洲地区地表覆盖数据,建立两者的交叉列联表,分析了长江三角洲地区的气溶胶光学厚度和地表覆盖类型变化的关系:地表覆盖类型的变化驱动着气溶胶光学厚度的变化,森林、草原等植被覆盖度高的地区,气溶胶光学厚度值要低于城镇等人为活动较高地区。  相似文献   

7.
利用ZY-3卫星数据高分辨率的特点,提出了一种基于图像自身的阴坡植被暗像元气溶胶光学厚度自动反演算法.首先,分区优选阴坡植被暗像元,基于程辐射信息估算红、蓝波段的气溶胶散射相函数、散射比.其次,在Gilabert算法基础上,增加地表漫反射项的考虑,利用简化的辐射传输方程直接解算阴坡植被及浓密植被暗像元气溶胶光学厚度.最后采用克里金插值,将多个暗像元气溶胶光学厚度推算到整景图像的分布,进而进行大气纠正.结果表明,香港地区ZY-3数据AOD反演结果与MODIS气溶胶C051产品趋势一致,ZY-3数据AOD结果在揭示繁华都市区内部的AOD差异,以及识别城市内部污染源方面更具优势.ZY-3数据大气纠正后,图像清晰度、对比度增强,统计结果显示水体及浓密植被的光谱特征与先验知识相符.  相似文献   

8.
以黄渤海上空大气为目标研究区,基于AERONET观测网,获取该区域2015—2017年的气溶胶光学厚度(AOD)实测数据,并对可见红外成像辐射计VⅡRS,中分辨率成像光谱仪MODIS,静止水色卫星成像仪GOCI与新一代地球同步气象卫星AHI H8的AOD遥感产品展开精度验证.同时,利用长时间的遥感影像探究并分析AOD在不同时空尺度下的分布特征与变化情况.结果表明:同其它AOD遥感产品相比,GOCI AOD展示出了高采样频率及高精度的特性.此外,在研究区域AOD的逐小时遥感影像中未发现明显的变化规律,而月平均图则显示出从黄渤海西部至中部再到东部AOD逐渐递减的趋势,且该趋势在研究区域不同的地方是具有差异的.不仅如此,本文还尝试分析影响AOD反演精度的潜在因子,发现其可能与地表反射率提取的准确度与预设气溶胶模型设置的合理性有关.  相似文献   

9.
聂鑫  毛前军 《环境科学学报》2022,42(11):372-382
平流层中的硫酸盐气溶胶在地球能量循环和全球气候变化中发挥着关键性作用.基于自主开发的矢量辐射传输模型,重点研究对流层气溶胶类型、平流层气溶胶光学厚度(AOD)、太阳天顶角(SZA)和地表反照率等对平流层硫酸盐气溶胶辐射强迫和大气加热速率等辐射效应的影响.结果表明,对流层无气溶胶时,平流层气溶胶在大气顶层(TOA)的辐射强迫为-15.80 W·m-2,地气系统的冷却效应最大.对流层气溶胶为黑碳时,平流层气溶胶在大气底层(BOT)的辐射强迫最小,为-47.53 W·m-2,地表冷却最大.同时,平流层硫酸盐的辐射强迫导致对流层 降温,平流层升温,在模拟条件下,最大升温可达0.6 K·d-1.此外,结果还表明,平流层硫酸盐辐射强迫对AOD、SZA和地表反照率均具有很高的敏感性.平流层气溶胶在TOA和BOT的辐射强迫随AOD的增大呈线性减小趋势,但随地表反照率的增大呈线性增大趋势.AOD和SZA的增大会强化辐射强迫的作用效果,但地表反照率的增大可能会改变辐射强迫的正负,导致平流层硫酸盐对地气系统的作用效果从冷却变为加热.  相似文献   

10.
济南秋季霾与非霾天气下气溶胶光学性质的观测   总被引:12,自引:2,他引:10       下载免费PDF全文
应用黑碳仪和积分浊度计于2009年10月11日至11月18日针对济南市大气气溶胶的光学特性进行了观测.结果显示,观测期间霾天气的散射系数和吸收系数及非霾天气的散射系数和吸收系数平均值分别为(582.5±311)Mm-1、(680.2±47.2)Mm-1和(205.7±134.8)Mm-1、(31.0±25.8)Mm-1.霾天气的气溶胶散射系数和吸收系数分别为非霾天气的2.6倍和2.8倍,单词散射反照率(SSA)也高于非霾天气.霾天气中二次气溶胶生成及黑碳气溶胶聚集是改变吸收系数、散射系数和SSA的日变化趋势的重要原因.此外,估算了观测期间及霾和非霾天气中气溶胶的光学厚度(AOD)分别为0.78,1.14和0.47.后向气流轨迹分析显示,非霾天气的气流主要来自于济南的西北至东北方向,运动速度快;而霾天气的所有的气流均来自于济南西南至东南方向,运动速度慢,当气流经过山东南部的火点时加剧了济南市的霾,并严重影响到该地区大气气溶胶的光学性质.  相似文献   

11.
北京地区MODIS卫星遥感气溶胶资料的检验与应用   总被引:14,自引:2,他引:14  
利用NASA发布的MODISlevel2产品 ,结合在北京大学多波段太阳光度计观测的数据 ,分析检验了 2 0 0 1 0 1— 2 0 0 2 11北京地区大气气溶胶光学厚度 (5 5 0nm)的变化情况 ,结果表明 ,MODIS卫星遥感的气溶胶光学厚度具有一定的精度 ,在一定程度上可以反映气溶胶污染物较大范围的空间分布 ,对分析有关气溶胶源和区域性输送等问题提供了一个有效的手段  相似文献   

12.
河北省气溶胶标高时空变化及其成因   总被引:1,自引:0,他引:1       下载免费PDF全文
以2012年河北省20个监测站的MODIS AOD(气溶胶光学厚度)和近地面水平能见度数据为基础,应用Peterson 模型和高斯模型,计算气溶胶标高月均值年内变化模型系数;应用全微分近似计算原理,构建了气溶胶标高时空变化的成因模型.结果表明:①全省平均气溶胶标高以夏季最高,为3.298 km;春、秋季次之,分别为2.864和2.284 km;冬季最低,为1.597 km. 全省气溶胶标高空间分布以夏季地域差异最显著,最大值为3.193 km;冬季地域差异最小,最大值为1.487 km. ②在全省尺度上,大气颗粒物排放强度和大气边界层高度每变化1%时,将会引致气溶胶标高分别变化0.577%和0.143%,二者对气溶胶标高变化的贡献率分别为80.1%和19.9%;在省内6个次级区域尺度上,大气颗粒物排放强度越大的区域,大气边界层高度对气溶胶标高的贡献率越大,如冀中南平原、沧州沿海平原和冀东平原的贡献率分别达到63.7%、57.8%、54.2%;反之则贡献率较低,如冀中平原、冀西北山区和冀东北山区的贡献率则分别仅为45.4%、32.6%、8.6%.   相似文献   

13.
基于卫星遥感和地面观测资料的霾过程分析   总被引:3,自引:0,他引:3  
利用MODIS、CALIPSO卫星观测的气溶胶产品和地面空气质量、气象资料,并结合HYSPLIT后向轨迹模式,探讨了2013年12月1~9日长江三角洲地区一次持续性的严重霾污染过程的形成、特征及其可能来源.研究表明,此次污染过程中长江三角洲地区8个代表城市大部分时间处于霾污染的状况下,气溶胶光学厚度(AOD)显著增长,空气质量指数(AQI)均达到或超过污染限值,且以中度以上污染为主.污染发生时,气溶胶主要存在于地面至2km的大气层内,尤其是850m以下.根据体积退偏比和色比得出球形气溶胶出现频率高于非球形气溶胶,大粒径气溶胶出现频率高于小粒径气溶胶,进而得到污染期间气溶胶的主要类型为“污染型”气溶胶.污染物的近距离的输送和持续小风,无降水的静稳气象条件而导致污染物难以扩散稀释而累积在本地是造成长江三角洲区域污染范围广、时间长、程度重的主要原因.  相似文献   

14.
张华玉  邹滨  刘宁  李莎 《中国环境科学》2022,42(9):4033-4042
针对现有卫星气溶胶光学厚度(AOD)产品空间分辨率和精度往往难以满足大气污染精细治理实际需求,提出了一种耦合偏差校正的统计降尺度改进模型(SDBC).该模型基于“空间尺度不变性假设”引入相关驱动因子的额外空间信息实现AOD降尺度,并在此基础上通过偏差校正进一步提升降尺度产品的精度.以1km分辨率MAIAC AOD产品为例,在北京、大湾区、台湾岛3个典型地区开展模型验证.结果表明:(1)DEM、NDVI、人口数量和土地覆盖是影响AOD变化的细节因子,在SDBC空间降尺度过程中引入可将AOD产品的空间分辨率有效提升至500m,且降尺度产品验证R2最高可达0.88;(2)顾及卫星观测几何、质量标识、大气水蒸气柱、气溶胶模式等因子的偏差校正则可进一步提升降尺度AOD产品的精度,3个地区的验证R2均在0.85以上,最高可达0.93;(3)信息熵评估结果显示SDBC模型生成的500m AOD产品提高了原始MAIAC AOD产品的空间信息量.在保留了公里级产品AOD的空间分布格局的基础上,SDBC产品也增强了细节和纹理特征、改善了边界现象和马赛克效应.研究结果证实SDBC模型能有效协同改进现有卫星AOD产品的空间分辨率和精度,提升我国大气污染遥感精准监测的业务能力.  相似文献   

15.
台湾海峡及周边海区气溶胶时空分布特征的遥感分析   总被引:1,自引:2,他引:1  
陈本清  杨燕明 《环境科学学报》2008,28(12):2597-2604
首次利用连续3年(2002~2004)的MODIS气溶胶卫星遥感资料分析了台湾海峡及周边海区的气溶胶时空分布特征.研究表明,台湾海峡及周边海区气溶胶多年平均光学厚度沿岸呈带状分布且表现出随离岸距离呈指数降低的空间分布特征.各典型海区中,台湾海峡多年平均气溶胶光学厚度最高;其次为东海南部和南海北部,西北太平洋海区的气溶胶光学厚度最低.4个季节的气溶胶光学厚度时空分布特征明显不同,呈现出春季高、冬季略高于秋季、夏季低的特点.春季受我国北方沙尘天气影响,整个海区气溶胶光学厚度高于其它季节,达到0.32;沙尘气溶胶在冬季季风的作用下能够向南跨越东海,最远传输到西北太平洋海区上空,使得该海区的气溶胶光学厚度值达到0.22,明显高于其它季节,夏季则由于东南季风和多降雨天气的影响,陆源污染物向海扩散条件差,气溶胶光学厚度低,仅为0.12,气溶胶类型分布分析表明,近岸海区的气溶胶类型主要以来自陆源的污染和烟尘气溶胶为主,春、秋以及冬季在大气动力的作用下可以输送到较远的海区上空;远岸海区的气溶胶类型则可能主要以海盐气溶胶或沙尘气溶胶(春季)为主;近远海之间海区的气溶胶类型分布则主要以污染气溶胶和海盐气溶胶(或沙尘气溶胶)混合为主.  相似文献   

16.
利用MODIS资料,对中国东南部地区及近海海域实现多通道大气气溶胶光学厚度(AOD)反演;利用地面连续波段的太阳辐射计数据对MODIS资料的反演结果进行校验,结果表明,反演结果的置信度较高;利用经过校验的结果对该地区的AOD分布特征进行了研究. 结果表明:AOD大值区主要集中在海拔低的东南沿海及经济发达地区,而地形比较复杂的山地丘陵地区的值较小;海洋上空的AOD反演由于受到了近海混浊水体和离水辐射的影响,反演结果偏高,但还没有发现能准确反映研究地区特征的输入参量和合适的算法,以提高近海海域AOD的反演精度.   相似文献   

17.
目的探测大气气溶胶的垂直分布,表征气溶胶的垂直结构和各层气溶胶的性质。方法使用金华站点激光雷达观测数据进行个例分析,用梯度法对边界层进行反演,利用退偏振比、颜色比和光学厚度对大气中不同高度的气溶胶层进行分析。结果大气垂直结构会出现多层不同性质的气溶胶层,激光雷达可以准确地探测气溶胶随时间变化的垂直结构特征。选取0点至8点进行分析表明,在1.5km高度上下出现两层气溶胶层,上下两层气溶胶层呈现出不同的性质,且其性质会随时间变化而改变。结论大气边界层以外气溶胶分布较为复杂,利用激光雷达探测的气溶胶消光系数、退偏振比、颜色比和光学厚度等参数能够较好地表征气溶胶的垂直结构和各层气溶胶的性质。  相似文献   

18.
上海地区大气气溶胶光学厚度的遥感监测   总被引:2,自引:1,他引:1  
采用V5.2算法,以MODIS 1B数据为数据源,利用Matlab软件进行数据预处理,反演了上海地区大气气溶胶光学厚度(AOD). 将AOD反演值分别与NASA的MOD04-L2气溶胶产品(10 km×10 km)以及CE-318太阳光度计实测结果进行对比. 结果表明:V5.2算法与NASA气溶胶产品相比,其精度更好,分辨率更高. 基于V5.2算法和利用MODIS遥感影像反演结果,分析了上海市典型天气AOD; 同时,将反演值与城市空气污染指数(API)进行了对比. 结果表明:AOD从一定程度上可以反映地面大气污染状况. 上海2008年AOD 12月最小,大气相对较清洁,6月最大,大气相对较浑浊;AOD的日际变化呈早晚高、中午略低的趋势,其中每日的09:00和18:00出现全天最高值,12:00左右也会出现小高峰.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号