首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

2.
快速启动厌氧氨氧化工艺   总被引:15,自引:13,他引:2  
闾刚  徐乐中  沈耀良  吴鹏  张婷  程朝阳 《环境科学》2017,38(3):1116-1121
为研究如何获得厌氧氨氧化的快速启动工艺,采用两种不同水力流态反应器:完全混合式膜生物反应器(MBR)和推流式厌氧折流板反应器(ABR),分别接种絮状硝化污泥,考察其厌氧氨氧化快速启动性能.结果表明:两种反应器均能成功启动厌氧氨氧化,MBR启动周期(90 d)比ABR(111 d)缩短20%;稳定运行期内,MBR总氮(NH_4~+-N+NO_2~--N)平均去除负荷[0.098 kg·(m3·d)-1]也明显高于ABR[0.089 kg·(m3·d)-1];此外,两个反应器中污泥形态差异明显,MBR中污泥呈絮状,而ABR第1隔室中以厌氧氨氧化颗粒污泥为主;NH_4~+-N、NO_2~--N和NO_3~--N之间的定量关系分析表明:相较于ABR,MBR能实现完全的生物截留,使得系统内含有更多种类的脱氮功能菌,有利于氮素的去除.MBR在厌氧氨氧化的快速启动方面表现出更明显的优势.  相似文献   

3.
长期储存亚硝化絮状污泥活性的恢复   总被引:2,自引:2,他引:0  
为探究长期储存亚硝化絮状污泥的脱氮性能,采用CSTR反应器,接种4℃下储存了10个月的亚硝化絮状污泥,考察其活性恢复性能,并采用Mi Seq高通量测序技术分析了污泥中微生物菌群结构的变化情况.结果表明,控制DO为0.4~0.8mg·L~(-1)、pH值8左右、温度为(30±1)℃等条件,长期储存亚硝化絮状污泥的活性可以在15 d内迅速恢复,氨氮去除率和亚硝积累率均达到90%以上;此外,污泥颜色由接种初期的灰黑色迅速恢复至棕黄色,SVI值显著降低,MLVSS/MLSS升高,EPS含量明显增加.随着亚硝化性能的恢复,厌氧、发酵微生物被洗脱,Nitrosomonas等氨氧化细菌相对丰度显著增加,同时,Nitrospria等硝化菌的生长得到了有效抑制.经历长期储存的亚硝化絮状污泥可作为实现短程硝化快速启动的接种污泥,更有利于短程硝化工艺的实际应用.  相似文献   

4.
Fe2+和Fe3+对厌氧氨氧化污泥活性的影响   总被引:3,自引:2,他引:1  
李祥  黄勇  巫川  王孟可  袁怡 《环境科学》2014,35(11):4224-4229
通过接种厌氧氨氧化污泥研究了Fe离子浓度及价态变化对厌氧氨氧化污泥活性的影响.短期浓度影响结果表明,当进水铁离子浓度由0升高到5 mg·L-1时,厌氧氨氧化污泥活性因受刺激而逐渐增强;当进水铁离子浓度大于5 mg·L-1时,因厌氧氨氧化反应产碱,铁离子形成氢氧化物沉淀,生物活性未受到影响.不同价态铁离子浓度变化对厌氧氨氧化污泥活性的影响无明显区别.长期价态影响结果表明,经过71个周期培养,含Fe2+进水的厌氧氨氧化反应器R1脱氮效能(以氮计)由0.28 kg·(m3·d)-1升高到0.65 kg·(m3·d)-1,是含Fe3+进水反应器R2的1.28倍.因此Fe2+更适合厌氧氨氧化菌生长的需求.实验结果进一步表明,Fe3+易导致厌氧氨氧化反应器R2内氨氮过量转化,亚硝氮与氨氮转化比(1.17)明显低于含Fe2+进水的反应器R1内亚硝氮与氨氮转化比(1.24).  相似文献   

5.
李祥  黄勇  袁怡  周呈  陈宗姮  张大林 《环境科学》2014,35(12):4636-4641
通过接种粒径小于0.9 mm的厌氧氨氧化污泥,启动具有气升装置的上流式厌氧反应器.利用厌氧氨氧化过程产生的氮气作为动力,研究了气升回流系统在厌氧反应器中对厌氧氨氧化污泥形态和性能的影响.结果表明,在反应器启动初期,反应器脱氮速率较低,产气量很小,导致厌氧氨氧化污泥易于凝聚.当脱氮速率达到3.4 kg·(m3·d)-1时,气升产生的回流量明显,反应器自回流系统形成.经过183 d运行,污泥颗粒中MLVSS含量随着污泥粒径增加而不断增长,粒径分布主要集中在1.6~2.5 mm,占污泥总体积的53.2%.与外置回流泵相比,气升装置具有同样功能,产生的回流有利于厌氧氨氧化反应器内污泥的颗粒化,同时减少回流泵所需要的动力消耗和设备费用.  相似文献   

6.
周正  王凡  林兴  董石语  朱强  李祥  黄勇 《环境科学》2018,39(3):1301-1308
通过好氧区接种亚硝化悬浮填料,厌氧区接种厌氧氨氧化絮状污泥和普通厌氧污泥研究了中试规模下一体式部分亚硝化-厌氧氨氧化反应器的启动与区域特性.结果表明,历时74 d成功启动中试一体式PN-ANAMMOX反应器,整体氮去除速率由0.02 kg·(m3·d)-1上升至0.48 kg·(m3·d)-1左右,可达到快速启动的效果,接种ANAMMOX污泥的比例与活性是实现PN-ANAMMOX反应器快速启动的关键因素;对两区域氮素转化特性分析表明,好氧区中AOB一直处于优势地位,NOB受到DO和基质的双重抑制,亚硝化效果稳定,NPRa由0.22 kg·(m3·d)-1上升到0.58 kg·(m3·d)-1左右,NAPa随着厌氧区脱氮能力的提升可达95%以上;厌氧区为一体式PN-ANAMMOX反应器的关键性区域,NRRana由0.02 kg·(m3·d)-1上升至4.7 kg·(m3·d)-1左右,期间中常温(温度由32℃下降至27℃)的变化首先对厌氧区产生影响,NRRana下降至3.7kg·(m3·d)-1左右,降低约21%,而对好氧区影响不大;在长时间运行下,两区域均可实现大量ANAMMOX菌的富集,此时好氧区也具有一定的脱氮能力,厌氧区则起强化脱氮的作用.  相似文献   

7.
赵晴  刘梦莹  吕慧  梁俊宇  刁兴兴  张鑫  孟了 《环境科学》2019,40(9):4195-4201
本研究从某垃圾填埋场计划将现有的垃圾渗滤液短程硝化反硝化脱氮工艺改造为短程硝化反硝化耦合厌氧氨氧化工艺的实际需求入手,以短程硝化反硝化污泥作为接种污泥,在上流式厌氧污泥床反应器(UASB)中完成厌氧氨氧化启动.探究反应器运行中的脱氮效能、氮容积负荷和氮去除负荷情况,并利用16S rRNA基因序列分析技术对长期运行条件下系统中微生物群落结构演替进行分析.结果表明,反应器经历了149 d后成功启动厌氧氨氧化,稳定运行后的进水总氮容积负荷达到4 000. 00 mg·(L·d)-1,总氮容积平均去除速率达到3 885. 76 mg·(L·d)-1,系统氨氮和亚硝酸盐氮的平均去除率均超过了95%.运行第250 d时,系统的生物多样性减少,门水平上厌氧氨氧化主要菌群Planctomycetes的丰度达到了54. 94%;属水平上Candidatus Kuenenia为主要菌属,其相对丰度达到了49. 66%.结果证明,在短程硝化反硝化基础上耦合厌氧氨氧化实现垃圾渗滤液深度处理的升级改造工艺具有可行性.  相似文献   

8.
为获得快速启动厌氧氨氧化的最佳污泥源及厌氧氨氧化颗粒污泥的快速形成工艺,采用本实验室自主研发复合型CAMBR反应器(厌氧折流板反应器(ABR)+膜生物反应器(MBR),分别接种厌氧颗粒污泥(R1)和絮状反硝化污泥(R2),考察不同接种污泥的厌氧氨氧化启动特征和颗粒化程度.结果表明,R1与R2反应器分别耗时45 d和60 d均成功快速启动厌氧氨氧化,其启动过程均可分为活性停滞期、活性提高期、活性稳定期3个阶段,但每个阶段氮素的去除规律略有不同,稳定运行期内,R1和R2反应器内NH_4~+-N和NO-2-N的平均去除率均高达95%以上;此外,R1反应器中形成了直径0.8~1.6mm为主的厌氧氨氧化红色颗粒污泥,R2反应器则以不规则块状和絮状为主,颗粒化程度较低,两个反应器内均可观察到红色颗粒污泥上浮现象;稳定运行期内NH_4~+-N、NO-2-N和NO_3~--N之间的定量关系分析表明:R1反应器内可能存在着硝酸盐型厌氧氨氧化,致使NH_4~+-N过量转化,R2反应器内则为典型亚硝酸盐型厌氧氨氧化.  相似文献   

9.
吴国栋  于德爽  李津  周同  王骁静 《环境科学》2017,38(7):2917-2924
针对含盐废水生物脱氮效能较低的问题,采用厌氧序批式反应器研究了K~+浓度变化对厌氧氨氧化污泥脱氮效能的影响.结果表明,适量的K~+可有效的提升反应器脱氮效能,K~+对厌氧氨氧化污泥脱氮效能的影响主要分为4个阶段:适应阶段,K~+浓度为(0~2 mmol·L~(-1)),K~+的突然添加破坏了原有反应平衡,但最终厌氧氨氧化菌适应了K~+的存在,由于K~+还未对厌氧氨氧化菌产生明显效果,NH_4~+-N和NO_2~--N去除率略有上升;活性提升阶段(2~8 mmol·L~(-1)),K~+对厌氧氨氧化生物系统有促进作用,随着K~+浓度的提升,NH_4~+-N和NO_2~--N去除率显著提升;活性稳定阶段(8~20 mmol·L~(-1)),厌氧氨氧化菌脱氮效能处于稳定状态,NH_4~+-N和NO_2~--N去除率虽有下降,但还是高于未添加K~+时;抑制阶段(大于20 mmol·L~(-1)),此时厌氧氨氧化菌活性降低,K~+对厌氧氨氧化产生较大抑制,脱氮效能已低于0 mmol·L~(-1).在整个周期内K~+浓度8 mmol·L~(-1)时达到最佳去除效果,NH_4~+-N与NO_2~--N的平均去除率为89.24%和84.87%,NRR为1.113 kg·(m~3·d)~(-1).  相似文献   

10.
CSTR和MBR反应器的短程硝化快速启动   总被引:9,自引:6,他引:3  
为实现短程硝化的快速启动,采用完全混合反应器(CSTR)和膜生物反应器(MBR)进行短程硝化启动性能对比研究,考察两个反应器在启动时间、氮素转化和污泥性能3个方面的差异.结果表明在进水C/N=1,温度为30℃±1℃,pH为7.5~8.0,DO为0.6~1.0 mg·L~(-1),结合缺氧/好氧比为1∶3(15 min∶45 min)和缩短HRT,CSTR和MBR分别运行56 d和44 d成功启动短程硝化,MBR启动周期较短.运行至第14 d、第28 d和第56 d时,CSTR和MBR亚硝累积率平均为51%、66%、89%和50%、71%、93%,硝酸盐氮生成速率(以NO_3~--N/MLVSS计)依次为7.4、4.0、1.7和7.6、3.5、1.0 mg·(g·h)~(-1),MBR在第28 d和第56 d表现出较高的亚硝累积率和较低的NO_3~--N产率,有利于短程硝化的快速启动.整个运行过程中,两个反应器内的亚硝化污泥均呈黄色,SVI在55~110 mL·g~(-1),MLVSS/MLSS稳定在0.6~0.8左右,良好的污泥性能为CSTR和MBR短程硝化的快速启动创造了有利条件.MBR在短程硝化快速启动中展现出更明显的优势.  相似文献   

11.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:2,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

12.
氨氮抑制是影响高含固有机固体废弃物厌氧消化产甲烷效率的重要因素.本研究通过实验室批量实验,考察了微米级零价铁对剩余污泥、热水解污泥厌氧消化的影响以及对高氨氮抑制解除的影响.结果表明,投加4 g·L~(-1)和10 g·L~(-1)零价铁对剩余污泥、热水解污泥厌氧消化过程中的产甲烷速率、迟滞时间和产甲烷潜势等动力学特征均未有影响.但是,在高氨氮抑制的厌氧消化过程中, 4 g·L~(-1)和10 g·L~(-1)的零价铁投加可使厌氧消化受氨氮抑制的产甲烷迟滞时间由对照组的18.61 d分别缩短为17.22 d和16.18 d,最大产甲烷速率(以VS计)由对照组的6.34 mL·(d·g)~(-1)提升为7.84 mL·(d·g)~(-1)和7.39 mL·(d·g)~(-1).零价铁并未通过化学反应对厌氧消化的pH缓冲体系产生直接影响,而是使氨氮抑制后的产甲烷优势古菌Methanosarcina的相对丰度(27 d)由对照组的30.71%提升到53.50%和60.30%.本研究证明了零价铁并不能提升污泥产甲烷潜势,而只是在受抑制影响的厌氧消化过程中,刺激产甲烷微生物的代谢活性,强化如氨氮抑制影响的快速解除.  相似文献   

13.
A hybrid membrane process for simultaneous sludge thickening and digestion (MSTD) was studied. During one cycle (15 d) of operation under a hydraulic retention time of 1 d, the concentration of mixed liquor suspended solids (MLSS) continuously increased from about 4 g·L−1 to 34 g·L−1, and the mixed liquor volatile suspended solids (MLVSS) increased from about 3 g·L−1 to over 22 g·L−1. About 42% of the MLVSS and 39% of the MLSS reduction were achieved. The thickening and digestion effects in the MSTD were further analyzed based on a mass balance analysis. Test results showed that biopolymers and cations of biomass were gradually released to the bulk solution during the process. It was also found that the capillary suction time, colloidal chemical oxygen demand, soluble microbial products, viscosity, and MLSS had significant positive correlations with the membrane fouling rate, whereas extracellular polymeric substances, polysaccharides, and proteins extracted from biomass had negative impacts on membrane fouling.  相似文献   

14.
通过向序批式生物膜反应器(SBBR)中投加氯化铝,研究了化学协同生物除磷过程中Al~(3+)对污泥脱氢酶活性(DHA)、胞外聚合物(EPS)及系统处理效果的影响.结果表明,氯化铝投加量少于0.1 mmol·L~(-1)时,Al~(3+)对微生物的活性有促进作用,多于0.1 mmol·L~(-1)的Al~(3+)对其活性有明显的抑制作用.氯化铝投加量少于0.1 mmol·L~(-1)时,Al~(3+)能够促进EPS中多糖(PS)和蛋白质(PN)的分泌,多于0.1 mmol·L~(-1)的Al~(3+)则只促进多糖的分泌,但对EPS的分泌总量没有影响.Al~(3+)会使污泥的SVI值显著降低,大大改善其沉降性能.MLSS、MLVSS基本上是随着Al~(3+)投加量的增加而增大,MLVSS/MLSS随着投药量的增加先减小后增大再减小.Al~(3+)对COD和TN的去除具有轻微抑制作用,但对TP的去除具有显著的改善作用.当Al~(3+)的投加为0.5 mmol·L~(-1)时,TP的去除效果最好,出水浓度仅为0.44 mg·L~(-1),满足一级A排放标准.此时,TP的去除率为92.7%,比不加药时提升了10.2%.  相似文献   

15.
以剩余污泥臭氧化过程中含磷物质的形态分布及变化规律为研究核心,分析了不同臭氧投加量下污泥样品中液相和固相中磷的形态,并探讨了不同磷形态与臭氧相关的释放性能.结果表明,臭氧投加量为0.15 g·g~(-1)时,液相总磷(TP_L)含量为38.26 mg·L~(-1),比氧化前污泥混合液中TP_L含量增加了29倍,因此,可将0.15 g·g~(-1)作为实际释磷工艺最佳臭氧投加量.臭氧氧化过程中污泥固相中各形态磷含量及其所占固相总磷(TP_S)比例的变化趋势基本相同.臭氧可提高污泥中磷潜在的生物可利用性,臭氧投加量为0.15 g·g~(-1)时,生物有效磷含量达20.74 mg·g~(-1),在TP_S中所占比例由原始污泥中的73.60%提高至86.27%.TP_L含量的增加主要来自污泥臭氧氧化过程中污泥解絮和溶胞,每溶解1 g MLSS向液相中释放TP_L的量为0.0324 g.  相似文献   

16.
杨涛  张静  何帅  张悦  马天佑  杨开 《环境科学学报》2016,36(8):2838-2843
针对化学协同生物除磷过程,研究了序批式生物膜反应器(SBBR)中FeSO_4对悬浮相活性污泥脱氢酶活性(DHA)、胞外聚合物(EPS)及系统处理效果的影响.结果表明,少量FeSO_4对DHA和EPS的分泌具有促进作用,但最佳投加量不一致,分别为0.10 mmol·L-1和0.20 mmol·L-1;大量的FeSO_4则会引发抑制.FeSO_4投加量少于0.30 mmol·L-1时会使污泥MLVSS、MLVSS/MLSS增加,超过0.30 mmol·L-1时则使MLVSS、MLVSS/MLSS下降,但MLSS和SVI随着FeSO_4投加量的增加分别持续增加和下降.FeSO_4对COD和TN的去除具有抑制作用,但并不显著,去除率分别在77%和72%左右;TP的去除效果明显改善,在投加量为0.30 mmol·L-1时效果最好.投加FeSO_4协同生物除磷时建议最佳投加量为0.30 mmol·L-1,此时污泥DHA被轻微抑制,但污泥浓度、EPS、TP去除率均已达到最大,出水水质满足一级A排放标准.  相似文献   

17.
为了考察不同污泥浓度(MLSS)下缺氧游离亚硝酸(FNA)对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的抑制影响,采用序批式反应器(SBR),基于4种MLSS(8 398、11 254、15 998和19 637 mg·L~(-1))的全程硝化污泥条件下,通过批次试验深入研究4种MLSS下的全程硝化活性污泥经过缺氧FNA(初始浓度为1. 3 mg·L~(-1))处理48 h后,AOB和NOB活性的变化情况.结果表明,缺氧FNA处理活性污泥48 h后,p H值升高0. 9左右,NO2--N浓度并未明显下降;过曝气下,NH4+-N浓度逐渐降解至0 mg·L~(-1),NH4+-N去除速率逐渐升高至4. 4~6. 8 mg·(L·h)-1,并随着抑制MLSS的升高,其所用时越短;抑制MLSS为8 398、11 254、15 998和19 637 mg·L~(-1)时,分别过曝气0~396、0~396、0~372和0~168 h内,亚硝酸盐累积率(NAR)均大于92%,当分别曝气至468、468、444和264 h时,NO2--N浓度和NAR分别降为0 mg·L~(-1)和0%,NO3--N浓度均升高至最高,其值分别为42. 6、49. 9、42. 9和47. 9 mg·L~(-1).  相似文献   

18.
基质暴露水平对ANAMMOX微生物的生长代谢有着重要意义,目前关于基质暴露水平对ANAMMOX污泥长期富集过程中生长特性的研究少有报道.采用两个连续流搅拌反应器,在逐步提升进水负荷的过程中,研究了高基质暴露水平培养方式(R1:出水NH_4~+-N和NO_2--N浓度均为40~60 mg·L~(-1))与低基质暴露水平培养方式(R~2:出水NH_4~+-N和NO_2--N浓度均为0~20 mg·L~(-1))对ANAMMOX微生物生长量和生物活性,以及反应器脱氮效能的影响及机制.结果表明,高基质暴露水平培养方式更有利于ANAMMOX反应器脱氮性能的提升.相比之下,高基质暴露水平培养方式下获得的NLR [0. 69 kg·(m~3·d)~(-1)]和NRR [0. 41 kg·(m~3·d)~(-1)]分别是低基质暴露水平培养方式的2倍;高基质暴露水平培养方式下,ANAMMOX污泥浓度(以VSS计)和总基因拷贝数分别达到1805 mg·L~(-1)和4. 81×1012copies,更有利于ANAMMOX微生物的快速富集培养;低基质暴露水平培养方式下,ANAMMOX污泥的活性更强[以N/VSS计,0. 27 g·(g·d)~(-1)],有利于富集生物活性更高的ANAMMOX污泥.  相似文献   

19.
零价铁自养反硝化过程活性污泥矿化及解决措施   总被引:1,自引:1,他引:0  
张宁博  李祥  黄勇  张文静 《环境科学》2017,38(9):3793-3800
本研究通过接种生活污水处理厂活性污泥,在升流式厌氧反应器内启动了零价铁还原硝酸盐的反应,经过52d的运行后实现氮去除速率29.3 g·(m~3·d)~(-1).针对运行过程中形成的三价铁及铁氧化物对污泥的包裹,致使污泥矿化,导致活性降低的问题,进行了流加污泥和改变回流两种防矿化方式的可行性研究.采用流加方式,经过22 d运行,硝酸盐氮转化速率在33.0 g·(m~3·d)~(-1)左右,出水亚硝酸盐氮平均浓度16.50 mg·L~(-1),此两者和矿化时期相比均无较大变化,而出水氨氮平均浓度从12.38 mg·L~(-1)下降到3.58 mg·L~(-1),氮去除速率从9.9 g·(m~3·d)~(-1)恢复至15.0 g·(m~3·d)~(-1),生物反应减弱了化学还原硝酸盐过程;采用改变回流方式,反应柱外部设置回流池,利用回流池上部水进行水力循环和上升冲刷,将生成的三价铁及铁氧化物随出水流出并沉积在外部回流池内,在上升流速3.49 m·h-1的条件下,转化硝酸盐对应生成的三价铁量有大约58%通过回流沉淀在外部回流池内,硝酸盐氮反应速率在34.3 g·(m~3·d)~(-1),出水亚硝酸盐氮、氨氮浓度分别为0.22 mg·L~(-1)、0.75mg·L~(-1),未出现氨和亚硝酸盐的大量积累,实现氮去除速率在33.4 g·(m~3·d)~(-1),实现了长期运行中污泥矿化问题的解决.对比两种方式,从处理效果看改变回流模式处理污泥矿化问题优于污泥流加方式.  相似文献   

20.
试验研究了不同污泥预处理方法对微生物絮凝剂的制备及其絮凝性能的影响.结果表明,污泥经碱热预处理后释放的有机物质量最大,SCOD/TCOD可达到0.56.以碱热预处理污泥作为基质制备的微生物絮凝剂,其产量为2.3 g·L-1,高于热预处理的1.6 g·L-1,酸热预处理的0.6 g·L-1,以及未接种污泥絮凝剂的18 mg·L-1.采用响应面分析法对碱热预处理污泥制备的微生物絮凝剂与PAM复配改善污泥脱水的过程进行了优化,实验分别拟合了关于污泥比阻(SRF)和干污泥量(DS)的二次模型,决定系数(R2)分别为0.9057和0.9171,表明拟合情况良好.实验中最佳的污泥脱水条件为微生物絮凝剂投加量12.6 g·kg-1,PAM投加量1.0 g·kg-1,Ca Cl2投加量59.7 mg·L-1,p H值6.7,搅拌速度185r·min-1.在此条件下,DS和SRF分别为29.1%和2.2×1012m·kg-1,表明碱热预处理污泥制备的微生物絮凝剂与PAM的联合使用有助于改善污泥脱水性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号