首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effect of inoculation with arbuscular mycorrhizal(AM) fungi( Acaulospora lavis) on the degradation of di(2-ethylhexyl) phthalate(DEHP) in soil was studies. Cowpea plants( Pigna sinensis) were used as host plants and grown in a specially designed rhizobox. The experimental results indicated that, both in sterile and non-sterile soil,mycorrhizal colonization rates were much higher in the mycorrhizal plants than in the non-mycorrhizal plants. Addition of 4 mg/kg DEHP slightly affected mycorrhizal colonization, but the addition of 100 mg/kg DEHP significantly decreased mycorrhizal colonization. DEHP degradation in the mycorrhizosphere (Ms) and hyphosphere (Hs),especially in the Hs, increased after inoculation with Acaulospora lavis. It is concluded that mycorrhizal hyphae play an important role in the plant uptake, degradation and translocation of DEHP. The mechanism might be attributed to increased numbers of bacteria and actinomycetes and activity of dehydrogenase, urease and acid phosphatase in the Ms and Hs by mycorrhizal fungi.  相似文献   

2.
Effects of Glomus mosseae on the toxicity of heavy metals to Vicia faba   总被引:4,自引:1,他引:4  
A glasshouse pot experiment was conducted to investigate effects of the arbuscular mycorrhizal fungus Glomus mosseae on the growth of Vicia faba and toxicity induced by heavy metals (HMs) (Cu, Zn, Pb and Cd) in a field soil contaminated by a mixture of these metals. There was also uninoculation treatment (NM) simultaneously. Mycorrhizal (GM) plants have significantly increased growth and tolerance to toxicity induced by heavy metals compared with NM plants. P uptake was significantly increased in GM plants. Mycorrhizal symbiosis reduced the transportation of HMs fi'om root to shoot by immobilizing HMs in the mycorrhizal, shown by increasing the ratios of HMs from root to shoot. Oxidative stress, which can induce DNA damage, is an important mechanism of heavy metal toxicity. GM treatment decreased oxidative stress by intricating antioxidative systems such as peroxidases and non-enzymic systems including soluble protein. The DNA damage induced by heavy metals was detected using comet assay, which showed DNA damage in the plants was decreased by the GM treatment.  相似文献   

3.
Alginates are naturally occurring components of organic matter in natural soil whose effects on nanoparticle (NP) toxicity to plants is not well understood. In the present study, corn plants were grown for one month in soil spiked with 400 mg/kg CeO2 NPs with various alginate concentrations. After one month of growth in the NPs impacted soil, plants were harvested and analyzed for Ce and mineral element concentrations. Chlorophyll concentration and heat shock protein 70, used as biomarkers for oxidative stress, were also evaluated. Results showed that, compared to CeO2 NPs treatment, alginate at 10, 50, and 100 mg/kg increased Ce concentration in roots by approximately 46%, 38%, and 29% and by 115%, 45%, and 56% in shoots, respectively. CeO 2 NPs without alginate increased Mn accumulation in roots by 34% compared to control. CeO2 NPs with low and medium alginate increased Mn by ca. 92% respect to NPs without alginate and by ca. 155% respect to control. CeO2 NPs without/with alginate significantly increased accumulation of Fe and Al in roots. In addition, alginate at 50 mg/kg increased Zn accumulation in roots by 52% compared to control. In shoots, K increased at all NP treatments but the accumulation of other elements was not affected. Alginate enlarged the impact of CeO2 NPs to corn plants by reducing chlorophyll a content and triggering overexpression of heat shock protein 70.  相似文献   

4.
The effects of arsenic (As) were investigated on seed germination, root and shoot length and their biomass and some other factors to elucidate the toxicity of As. The results showed low concentrations of As (0-1 mg/kg) stimulated seed germination and the growth of root and shoot, however, these factors all decreased gradually at high concentrations of As (5-20 mg/kg). The contents of O2^-, MDA, soluble protein and peroxidase (POD) activity all increased with increasing As concentrations. Soluble sugar content, ascorbate peroxidase (APX), and superoxide dismutase (SOD) activities decreased at low concentrations of As, and increased at high concentrations of As. While acetylsalicylic acid (ASA) and chlorophyll contents, catalase (CAT) activity displayed increasing trend when the concentrations of As was lower than 1 mg/kg, and then decreasing trend. By polyacrylamide gel electrophoresis (PAGE), As induced the expression of POD isozymes of wheat seedlings. As induced the expression of CAT isozymes but inhibited the expression of SOD isozymes of wheat seedlings at concentrations lower than 1 mg/kg. However, As inhibited the expression of CAT isozymes but induced the expression of SOD isozymes at concentrations higher than 5 mg/kg. The results indicated As could exert harmfulness in the early development stage of wheat at inappropriate concentrations.  相似文献   

5.
Does copper reduce cadmium uptake by different rice genotypes?   总被引:4,自引:0,他引:4  
A hydroponics experiment was conducted to investigate the effect of copper (Cu) on cadmium (Cd), calcium (Ca), iron (Fe), and zinc (Zn) uptake by several rice genotypes. The experiment was carried out as a 2×2×4 factorial with four rice genotypes and two levels of Cu and Cd in nutrient solution. Plants were grown in a growth chamber with controlled environment. The results showed a significant difference between the biomass of different rice genotypes (P 〈 0.001). The Cd and Cu concentration in the solution had no significant effect on the biomass. The addition of Cu significantly decreased Cd uptake by shoots and roots of rice (P 〈 0.001). The Cd concentration did not significantly influence Ca uptake by plants, whereas the Cu concentration did (P = 0.034). There was a significant influence of Cd on Fe uptake by shoots and roots (P 〈 0.001, P = 0.003, respectively). Zn uptake decreased significantly as the addition of Cd and Cu increased in shoots. We concluded that Cu had significant influence on Cd uptake. The possible mechanisms were discussed.  相似文献   

6.
Lead and Zn uptake and chemical changes in rhizosphere soils of four emergent-rooted wetland plants; Aneilema bracteatum, Cyperus alternifolius, Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two experiments: (1) rhizobag filled with “clean” or metal-contaminated soil for analysis of Pb and Zn in plants and rhizosphere soils; and (2) applied deoxygenated solution for analyzing their rates of radial oxygen loss (ROL). The results showed that the wetland plants with di erent ROL rates had significant e ects on the mobility and chemical forms of Pb and Zn in rhizosphere under flooded conditions. These e ects were varied with di erent metal elements and metal concentrations in the soils. Lead mobility in rhizosphere of the four plants both in the “clean” and contaminated soils was decreased, while Zn mobility was increased in the rhizosphere of the “clean” soil, but decreased in the contaminated soil. Among the four plants, V. serpyllifolia, with the highest ROL, formed the highest degree of Fe plaque on the root surface, immobilized more Zn in Fe plaque, and has the highest e ects on the changes of Zn form (EXC-Zn) in rhizosphere under both “clean” and contaminated soil conditions. These results suggested that ROL of wetland plants could play an important role in Fe plaque formation and mobility and chemical changes of metals in rhizosphere soil under flood conditions.  相似文献   

7.
Contamination of irrigation water represents a major constraint to Bangladesh agriculture, resulting in elevated levels in the terrestrial systems. Lux bacterial biosensor technology has previously been used to measure the toxicity of metals in various environmental matrices. While arbuscular mycorrhizal fungi have their most significant effect on phosphorus uptake, but showed alleviated metal toxicity to the host plant. The study examined the effects of arsenic and inoculation with an arbuscular mycorrhizal fungus, Glomus mosseae, on lentil (Lens culinaris L. cv. Titore). Plants were grown with and without arbuscular mycorrhizal inoculum for 9 weeks in a sand and terra-green mixture (50:50, V/V) and watered with five levels of arsenic (0, 1, 2, 5, 10 mg As/L arsenate). The results showed that arsenic addition above 1 mg/L significantly reduced percentage of mycorrhizal root infection. On further analysis a close relationship was established with the vegetative and reproductive properties of lentil (L. culinaris) plants compared to the percentage bioluminescence of the soil leachate. However, arbuscular mycorrhizal fungal inoculation reduced arsenic concentration in roots and shoots. Higher concentrations of arsenic (5, 10 mg As/L arsenate) reduced the mycorrhizal efficiency to increase phosphorus content and nitrogen fixation. Therefore, this study showed that increased concentration of arsenic in irrigation water had direct implications to the lentil (L. culinaris) plants overall performance. Moreover the use of bioassay demonstrated that mycorrhiza and clay particle reduced arsenic bioavailability in soil.  相似文献   

8.
Phytoremediation has long been recognized as a cost-effective method for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil. A study was conducted to investigate the uptake and accumulation of PAHs in root and shoot of Lolium perenne L. Pot experiments were conducted with series of concentrations of 3.31-378.37 mg/kg for phenanthrene and those of 4.22-365.38 mg/kg for pyrene in a greenhouse. The results showed that both ryegrass roots and shoots did take up PAHs from spiked soils, and generally increased with increasing concentrations of PAH in soil. Bioconcentration factors(BCFs) of phenanthrene by shoots and roots were 0.24- 4.25 and 0.17-2.12 for the same treatment. BCFs of pyrene by shoots were 0.20-1.5, except for 4.06 in 4.32 mg/kg treatment, much lower than BCFs of pyrene by roots (0.58-2.28). BCFs of phenanthrene and pyrene tended to decrease with increasing concentrations of phenanthrene and pyrene in soil. Direct uptake and accumulation of these compounds by Lolium perenne L. was very low compared with the other loss pathways, which meant that plant-promoted microbial biodegradation might be the main contribution to plant-enhanced removal of phenanthrene and pyrene in soil. However, the presence of Lolium perenne L. significantly enhanced the removal of phenanthrene and pyrene in spiked soil. At the end of 60 d experiment, the extractable concentrations of phenanthrene and pyrene were lower in planted soil than in non-planted soil, about 83.24%-91.98% of phenanthrene and 68.53%-84.10% of pyrene were removed from soils, respectively. The results indicated that the removal of PAHs in contaminated soils was a feasible approach by using Lolium perenne L.  相似文献   

9.
A pot experiment was conducted to investigate the influence of elemental sulfur to contaminated soil on plant uptake by a heavy metal hyperaccumulator, Indian mustard( Brassica juncea ) and a field crop, winter wheat( Triticum. aestivum). Elemental sulfur(S) with different rates was carried out, they were 0(S0 ), 20(S20 ), 40(S40 ), 80(S80 ), and 160(S160 ) mmol/kg respectively. Extra pots with the same rates of S but without plants were used for soil sampling to monitor pH and CaCl2-extractable heavy metal changes. The results showed that S enhanced phytoextraction of Pb and Zn from contaminated soil. Application S effectively decreased soil pH down to 1.1 as the most at the rate of Sl60. The concentrations of CaCl2-extractable Pb and Zn in soil and uptake of Pb and Zn by the plants were increased with soil pH decreased. A good correlation between CaCl2-extractable Pb/Zn and soil pH was found( Rpb^2 = 0.847 and RZn^2 = 0,991, n = 25). With S application, soil CaCl2-extractable Pb and Zn concentrations, concentration of Pb and Zn in plants and the amount of removal by plant uptake were significanfly higher than those without S. Under the treatment of S160, the highest CaCl2-extmctable Pb and Zn were observed, they were 4.23 mg/kg and 0.40 mg/kg, 2.7 and 2.0 times as that of the control(So ) respectively. At the highest rates of S( Sl~0 ), both Indian mustard and winter wheat reached the highest uptake of Pb and Zn. The highest Pb concentrations in wheat and Indian mustard were 32.8 mg/kg and 537.0 mg/kg, all 1.8 times as that of the control, and the highest Zn concentrations in wheat and Indian mustard were 215.5 mg/kg and 404.0 mg/kg, 2.4 and 2.0 times as that of the control respectively. The highest removals of Pb and Zn from the contaminated soil were 0.41 rag/pot and 0.31 nag/pot by Indian mustard in the treatment of S160 through 50 days growth.  相似文献   

10.
Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (〈20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.  相似文献   

11.
通过盆栽模拟试验研究了添加不同铁源及接种丛枝菌根真菌(Arbuecular mycorrhizal fungi,AMF)对高砷污染土壤上玉米生长及其吸收磷、砷、铁、锰、铜和锌的影响.试验结果表明,与对照相比,添加硫酸亚铁并接种AMF显著地提高了土壤有效铁、锰含量,降低了土壤中水溶性砷、磷含量以及玉米地上部砷的含量,并极大地增加了植株对磷的吸收,提高了植株体内磷砷吸收量之比,从而明显地改善了植株的菌根建成和生长状况.在不接种情况下,硫酸亚铁和石灰混合处理显著地降低了土壤水溶性砷、磷含量及根系砷含量,并明显增加了磷的吸收以及磷、砷吸收量的比值,使玉米植株生物量和根长增加的幅度较其它铁源处理时更大.尽管添加铁尾矿砂增加了土壤水溶性磷的含量以及植株磷的吸收而在一定程度上改善了玉米的生长,但这种效果以不接种时更为明显,因而有必要根据土壤的污染程度调整铁尾矿砂的添加量和接种抗性菌株,以强化植物的抗砷能力.  相似文献   

12.
通过盆栽模拟试验研究了不同磷石膏(PG)添加量(0、20、40g·kg-1)和接种3种丛枝菌根真菌(Glomus mosseae(GM)、Glomus aggregatum(GA)、Diversispora spurcum(DS))对玉米生长及其磷、硫、砷吸收的影响.试验结果表明:随磷石膏添加量的提高,土壤有效磷、有效...  相似文献   

13.
A pot experiment was conducted to study the e ects of arbuscular mycorrhizal (AM) fungi (from contaminated or uncontaminated soils) on arsenic (As) uptake of tobacco (Nicotiana tabacum L.) in As-contaminated soil. Mycorrhizal colonization rate, dry weight, As and P uptake by plants, concentrations of water-extractable As and As fractions were determined. A low mycorrhizal colonization rate (< 25%) was detected. Our research indicated that AM fungi isolated from polluted soils were no more e ective than those from unpolluted soils when grown in symbiosis with tobacco. No significant di erences were observed in roots and stalks dry weights among all treatments. Leaves and total plant dry weights were much higher in Glomus versiforme treatment than that in control treatment. As contents in roots and stalks from mycorrhizal treatments were much lower than that from control treatment. Total plant As content exhibited the same trend. P concentrations in tobacco were not a ected by colonization, nor were stalks, leaves and total plant P contents. Roots P contents were remarkably lower in HN treatments than in other treatments. Meanwhile, decreased soil pH and lower water-extractable As concentrations and higher levels of As fraction bound to well-crystallized hydrous oxides of Fe and Al were found in mycorrhizal treatments than in controls. The protective e ect of mycorrhiza against plant As uptake may be associated with changes in As solubility mediated by changing soil pH. These results indicated that under As stress, proper mechanisms employed by AM fungi can protect tobacco against As uptake. Results confirmed that AM fungi can play an important role in food quality and safety.  相似文献   

14.
镧-铅复合污染下AM真菌对玉米生长和镧、铅吸收的影响   总被引:2,自引:1,他引:1  
常青  郭伟  潘亮  王起凡  周昕南  杨亮  李娥 《环境科学》2017,38(9):3915-3926
采用温室盆栽试验的方法,模拟不同程度的镧-铅复合污染土壤(50、200、800 mg·kg~(-1)),研究接种丛枝菌根(arbuscular mycorrhizal,AM)、真菌Claroideoglomus etunicatum(CE)和Rhizophagus intraradices(RI)对玉米(Zea mays L.)菌根侵染率、生物量、矿质营养元素吸收、C∶N∶P生态化学计量比、稀土镧(La)和重金属铅(Pb)吸收、转运的影响,旨在为稀土-重金属复合污染土壤的治理和修复提供科学依据.结果表明,AM真菌CE和RI均与玉米建立了共生关系,平均菌根侵染率为26.7%~95.8%;随着La-Pb复合污染含量的增加,玉米植株菌根侵染率、地上部和根部生物量以及N、P、K、Ca、Mg这5种矿质营养元素含量显著降低,而玉米植株C∶P和N∶P以及地上部和根部La、Pb含量显著增加.接种2种AM真菌使玉米植株生物量显著提高了17.8%~158.9%,地上部和根部P含量显著提高了24.5%~153.8%,降低了C∶P和N∶P,符合生长速率假设.在3种程度La-Pb复合污染含量土壤上,AM真菌使玉米植株根部Pb含量显著增加了51.3%~67.7%,地上部Pb含量显著降低了16.0%~67.7%,Pb从玉米根部向地上部的转运率降低了31.5%~54.7%;同时,接种AM真菌显著增加了轻度LaPb复合污染土壤上玉米植株的La含量,在中度La-Pb复合污染土壤上却显著减少了玉米地上部的La含量,增加了玉米根部的La含量,抑制了La从根部向地上部的转运,重度La-Pb复合污染土壤上均没有显著影响.试验结果初步证明,AM真菌具有促进稀土-重金属复合污染土壤植物修复的潜力,对于稀土-重金属复合污染土壤生态系统的植被恢复具有潜在应用价值.  相似文献   

15.
不同磷水平下丛枝菌根真菌对纳米氧化锌生物效应的影响   总被引:2,自引:2,他引:0  
纳米ZnO颗粒是应用最为广泛金属型纳米颗粒(nanoparticles,NPs)之一,对作物和土壤微生物的影响值得关注.丛枝菌根(arbuscular mycorrhizal,AM)是自然界中普遍存在的植物-真菌共生体,对各种环境胁迫具有一定的抵御能力,但菌根效应受土壤和植物磷含量的影响.分别设置0、20、50、100 mg·kg~(-1)这4个磷水平,在接种或不接种AM真菌Funneliformis mosseae、添加或不添加纳米ZnO(500 mg·kg~(-1))条件下在温室中利用玉米进行土壤盆栽试验.结果表明,纳米ZnO没有显著影响玉米生长,但不利于菌根侵染和磷素吸收,并引起锌在植物体内的积累.纳米ZnO和高磷降低玉米菌根侵染,但AM真菌在所有磷水平下均显著促进植物生长.施磷和接菌均可使土壤p H升高、降低纳米ZnO源锌的生物有效性,从而降低锌向玉米地上部分的转运和积累,体现出一定保护作用.接菌在多数情况下显示出积极的菌根效应,尤其在低磷、添加纳米ZnO条件下更为显著.结果首次表明,AM真菌、磷肥均有助于减轻纳米ZnO引起的土壤污染及其所产生的生态和健康风险.  相似文献   

16.
丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响   总被引:2,自引:2,他引:0  
王芳  郭伟  马朋坤  潘亮  张君 《环境科学》2016,37(1):309-316
采用温室盆栽试验的方法,模拟不同程度的铈(Ce)污染土壤(100、500、1 000 mg·kg~(-1)),研究接种丛枝菌根(arbuscular mycorrhizal,AM)真菌Glomus aggregatum(GA)和Funneliformis mosseae(FM)对玉米(Zea mays L.)菌根侵染率、生物量、营养元素吸收、C:N:P生态化学计量比和稀土元素Ce吸收、转运的影响,旨在为稀土污染土壤的治理提供基础数据和技术支持.结果表明,GA和FM均与玉米成功建立了互惠共生关系,平均菌根侵染率为7.12%~74.47%;随着土壤Ce污染程度的增加,玉米菌根侵染率、地上部和根部的生物量、营养元素N、P、K的吸收量以及Ce从根到叶的转运率均显著降低,而玉米植株的C:P和N:P、地上部和根部Ce含量显著升高.接种AM真菌不同程度地促进了玉米的生长,在重度Ce污染土壤接种FM对玉米生长的促进作用显著高于GA,而在轻度和中度Ce污染土壤二者之间无显著性差异;接种显著改善了玉米的营养状况,一定程度上显著降低了玉米植株的C:N:P在轻度和中度Ce污染土壤GA对营养元素吸收的促进作用要显著高于FM,而在重度Ce污染土壤则反之;接种也显著增加了轻度Ce污染土壤玉米地上部和根部Ce含量,而对中度和重度Ce污染土壤上玉米Ce的吸收无显著影响,促进了Ce从根部到地上部分的转运.试验初步证明,AM真菌能够减轻稀土元素Ce对植物的毒害作用,在稀土污染土壤的植物修复中具有潜在的应用价值.  相似文献   

17.
丛枝菌根影响纳米ZnO对玉米的生物效应   总被引:2,自引:2,他引:0  
王卫中  王发园  李帅  刘雪琴 《环境科学》2014,35(8):3135-3141
人工纳米颗粒(engineered nanoparticles,ENPs)能被植物吸收、积累,随食物链进入人体而引起健康风险.丛枝菌根(arbuscular mycorrhizal,AM)真菌可与陆地生态系统中绝大多数高等植物互惠共生,可能影响ENPs的生物效应.在温室土壤盆栽条件下研究了施加不同水平纳米ZnO(0、500、1000、2000、3000 mg·kg-1)和接种AM真菌Acaulospora mellea对玉米生长和营养状况的影响.结果表明,随土壤中纳米ZnO施加水平的增加,菌根侵染率和玉米生物量均呈降低趋势,根系总长、总表面积及总体积降低,植株体内Zn含量和吸收量逐渐增加,地上部分P、N、K、Fe、Cu吸收量逐渐降低.与对照相比,接种AM真菌均促进玉米的生长,改善P、N、K营养,根系总长、总表面积及总体积增加,并在施加纳米ZnO时增加Zn在玉米根系中的分配比例.本结果首次表明,土壤中纳米ZnO对丛枝菌根具有一定毒性,而接种AM真菌能够减轻其毒性,对宿主植物起到保护作用.  相似文献   

18.
丛枝菌根真菌对不同含盐量湿地土壤中芦苇生长的影响   总被引:3,自引:3,他引:0  
采用温室盆栽实验的方法,研究接种Claroideoglomus etunicatum(CE)、Rhizophagus intraradices(RI)、Funneliformis mosseae(FM)和Glomus versiforme(GV)对非盐渍化和盐渍化湿地土壤上芦苇(Phragmites australis)菌根侵染率、生物量、矿质营养吸收、C∶N∶P生态化学计量比和Na+、Cl-含量的影响,旨在为我国湿地生态系统的生态恢复和盐碱化修复提供理论依据和技术支持.结果表明,在2种湿地土壤上4种AM真菌的平均菌根侵染率为2.5%~38%,接种CE的侵染率显著高于其它接种处理;盐渍化湿地土壤上芦苇菌根侵染率与非盐渍化湿地土壤间无显著性差异,非盐渍化湿地土壤芦苇生物量、矿质营养元素的吸收显著高于盐渍化湿地土壤,而Na+和Cl-的含量显著低于盐渍化湿地土壤.对于非盐渍化湿地土壤,接种GV处理显著增加了芦苇地上部的干重,促进了芦苇地上部对N、P、K、Ca和Mg等5种营养元素的吸收,接种GV和RI则显著促进了芦苇根部对P和K的吸收;4种接种处理显著降低了芦苇地上部N∶P,接种FM和GV显著降低了根部C∶N和C∶P;4种接种处理也显著降低了芦苇地上部Cl-的含量,接种RI处理显著降低了芦苇地上部Na+的含量.对于盐渍化湿地土壤,4种接种处理对芦苇生物量、矿质营养吸收和Na+、Cl-的含量均没有显著性影响.结果也表明,AM真菌对于不同含盐量湿地土壤芦苇生长的影响表现出不同的菌根效应,在非盐渍化湿地土壤上对芦苇生长的有益作用明显好于盐渍化湿地土壤.应结合相应的技术措施进一步通过野外实地实验筛选接种效果好的AM真菌菌种,探讨菌根技术对不同含盐量湿地土壤上芦苇生长的实际作用.  相似文献   

19.
丛枝菌根真菌在不同类型煤矸石山植被恢复中的作用   总被引:2,自引:1,他引:1  
赵仁鑫  郭伟  付瑞英  赵文静  郭江源  毕娜  张君 《环境科学》2013,34(11):4447-4454
采用温室盆栽试验的方法,研究了接种丛枝菌根(arbuscular mycorrhizal,AM)、真菌Glomus etunicatum(GE)和Glomus versiforme(GV)对新排、风化和自燃这3种类型煤矸石上玉米(Zea mays L.)生长、矿质营养吸收、C∶N∶P生态化学计量比、重金属吸收的影响,旨在为草原生态系统煤矸石废弃地的生态重建和植被恢复提供技术依据.结果表明,在3种煤矸石上2种AM真菌均与玉米成功建立了互惠共生关系,平均菌根侵染率为36%~54%.接种GE和GV均显著增加了新排和风化煤矸石上玉米植株的干重,接种GV显著增加了自燃煤矸石上玉米植株的干重;接种AM真菌不同程度促进了玉米对N、P和K的吸收,降低了C∶N∶P计量比,符合生长速率假设;接种对植株地上部和根部重金属Cu、Fe、Mn、Zn浓度的影响存在显著的差异.结果表明,GE和GV在3种类型的煤矸石上表现出了不同的菌根效应,GV更适于新排煤矸石和风化煤矸石的植被恢复,GE更适于自燃煤矸石的植被恢复.试验初步证明AM真菌对于增强玉米适应不同类型煤矸石复合逆境,以及在草原生态系统不同类型煤矸石废弃地上重建植被均具有一定潜在的作用,应进一步验证野外自然条件下AM真菌对不同类型煤矸石山的实际作用效果.  相似文献   

20.
沼渣是厌氧发酵的残余物,可作为肥料施用,但因其含有一定量的重金属等有害物质可能导致环境污染风险.丛枝菌根(Arbuscular mycorrhiza,AM)真菌作为植物共生真菌,可以促进植物对矿质养分的吸收,同时能够通过不同途径减轻重金属对植物的毒害.本文采用甘草(Glycyrrhiza uralensis Fisch.)为供试植物开展盆栽试验,考察施用沼渣结合接种AM真菌对甘草生长和矿质营养的影响.试验结果表明,施用沼渣显著促进了植物生长,提高了植物生物量、磷含量和叶片叶绿素含量,与此同时提高了土壤有机质和磷、铬、铜、铅含量,并导致植物重金属含量显著升高.另一方面,AM真菌能够和甘草根系形成良好共生关系,但施用沼渣对菌根侵染表现出显著抑制作用.接种AM真菌促进了甘草生长、提高了根系磷含量及叶片叶绿素含量,同时显著降低了植株重金属含量至安全阈值以内.本试验表明,施用沼渣同时接种AM真菌可在促进甘草生长的同时阻控重金属污染风险,因而可作为沼渣安全利用的一种可行技术途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号