首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用斑马鱼胚胎毒性测试方法,研究了PFOA/PFOS对斑马鱼的急性毒性和生命早期阶段生长发育的影响.结果表明,PFOS/PFOA对斑马鱼有明显毒性作用,LC50(48 h)分别为1 005 mg/L和107 mg/L,LC50(96 h)分别为499 mg/L和71 mg/L.PFOS/PFOA抑制斑马鱼胚胎发育,可导致胚胎发育畸形,甚至死亡,高浓度(>240 mg/L)PFOS损伤细胞膜,导致胚胎分裂中的细胞发生自溶而卵凝结死亡,抑制胚胎原肠胚的形成.在各种亚致死效应中,脊柱畸形对PFOS暴露最敏感,其EC50=9.14 mg/L,PFOA暴露最敏感亚致死性毒理学终点为96 h孵化,对应EC50=328.0 mg/L.PFOA/PFOS导致胚胎发育延迟,具有发育毒性.  相似文献   

2.
根据鱼鳔发育的不同阶段,从受精后0 h(0 hours post fertilization, 0 hpf)开始对5个发育阶段(0 hpf~孵化前、0~120 hpf、0~168 hpf、孵化后~120 hpf、120~168 hpf)的斑马鱼进行nano-ZnO暴露实验,研究不同浓度的nano-ZnO对斑马鱼鱼鳔的影响.结果表明,nano-ZnO悬浮液中溶解的Zn~(2+)不是导致斑马鱼死亡和鱼鳔缺损的唯一或主要原因.nano-ZnO暴露浓度越高,斑马鱼的死亡率和鱼鳔缺损率越高,存在剂量-效应关系.15 mg·L~(-1) nano-ZnO可造成90%的斑马鱼鱼鳔缺损和死亡,10 mg·L~(-1) nano-ZnO可导致斑马鱼鱼鳔面积缩小70%.斑马鱼鱼鳔早期发育阶段(0~168 hpf)对nano-ZnO敏感度大小为:出芽阶段(0 hpf~孵化前)充气阶段(孵化后~120 hpf)充气完成阶段(120~168 hpf).斑马鱼鱼鳔的发育面积和发育时间也受nano-ZnO暴露染毒的影响而发生变化.斑马鱼死亡率和鱼鳔缺损率(鱼鳔发育)之间存在相关性(r=0.978,p0.01).这表明斑马鱼鱼鳔的发育缺损是造成斑马鱼胚胎死亡的主要原因之一,但nano-ZnO对斑马鱼鱼鳔的影响机理,尤其是对鱼鳔出芽阶段和充气阶段的致毒机理需要进一步研究.  相似文献   

3.
全氟辛烷磺酸(PFOS)对斑马鱼卵黄蛋白原mRNA水平的影响   总被引:3,自引:2,他引:1  
为了研究环境低剂量全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)对水生生物的内分泌干扰效应和可能的作用机制,测定了PFOS对斑马鱼(Brachydanio rerio)肝脏中卵黄蛋白原(vitellogenin,VTG)mRNA水平的影响.将斑马鱼暴露于4个PFOS的环境低剂量浓度组(0.1、1、10、100μg.L-1)中进行21d毒性试验,收集肝脏样品,提取RNA,采用荧光定量PCR(qRT-PCR)分别检测VTG1和VTG3的mRNA水平.结果表明:①PFOS暴露引起雄性斑马鱼肝脏VTG1和VTG3 mRNA水平升高,VTG1 mRNA水平升高与剂量呈正相关,在100μg.L-1暴露浓度处与对照组呈现显著性差异;VTG3的mRNA水平变化与剂量呈倒U型曲线,呈现典型的毒物刺激荷尔蒙效应,在10和100μg.L-1暴露浓度处与对照组呈现显著性差异;②PFOS暴露引起雌性斑马鱼肝脏中VTG1 mRNA水平升高,在10μg.L-1暴露浓度处与对照组呈现显著性差异,但在高浓度(10和100μg.L-1)处试验结果误差较大;VTG3 mRNA水平只在10μg.L-1暴露浓度处升高,但相比于对照组均没有显著性差异.试验结果表明PFOS暴露对斑马鱼的内分泌干扰作用明显,其毒性作用机制可能是类雌激素效应,而肝脏中VTG1和VTG3mRNA水平可能作为PFOS内分泌干扰效应评价的敏感生物标志物,但VTG1和VTG3 mRNA水平的响应曲线呈现基因亚型和性别差异.  相似文献   

4.
Ferrate(VI) salt is an oxidant and coagulant for water and wastewater treatment. It is considered as a possible alternative method in greywater treatment. However, challenges have existed in putting ferrate(VI) technology into full-scale practice in water and wastewater treatment due to the instability of ferrate solution and high production cost of solid ferrate products. This study demonstrated a new approach of greywater treatment with on-line batch production of Fe(VI) to which Fe(III) salt was oxidized at a weak acidity solution. A series of experiments were conducted to investigate the effect of Fe(VI) on light greywater (total organic carbon (TOC) = 19.5 mg/L) and dark greywater (TOC = 55 mg/L) treatment under different conditions with varying pH and Fe(VI) doses. In addition, the combination use of Fe(VI) and Al(III) salts was proved to be more efficient than using the Fe(VI) salts alone at greywater recycling. The optimum dosage of Fe(VI)/Al(III) salts was 25/25 mg/L for light greywater, 90/60 mg/L for dark greywater, respectively. The TOC values of both light greywater and dark greywater were reduced to less than 3 mg/L with the dosages. The cost for treating greywater was 0.06–0.2 $/ton at ferrate(VI) dosage of 25–90 mg/L and 0.008–0.024 $/ton at AlCl3 dosage of 25–60 mg/L. The full operating cost needs further assessment before the Fe(VI)/Al(III) technology could be implemented in greywater treatment.  相似文献   

5.
Aljustrel mines were classified as having high environmental hazard due to their large tailings volume and high metal concentrations in waters and sediments.To assess acid mine drainage impacted systems whose environmental conditions change quickly,the use of biological indicators with short generation time such as diatoms is advantageous.This study combined geochemical and diatom data,whose results were highlighted in 3 groups:Group 1,with low p H(1.9–5.1)and high metal/metalloid(Al,As,Cd,Co,Cu,Fe,Mn,Ni,Pb,Zn;0.65–1032 mg/L)and SO_4(405–39124 mg/L)concentrations.An acidophilic species,Pinnularia aljustrelica,was perfectly adapted to the adverse conditions;in contrast,teratological forms of Eunotia exigua were found,showing that metal toxicity affected this species.The low availability of metals/metalloids in sediments of this group indicates that metals/metalloids of the exchangeable fractions had been solubilized,which in fact enables metal/metalloid diatom uptake and consequently the occurrence of teratologies;Group 2,with sites of near neutral p H(5.0–6.8)and intermediate metal/metalloid(0.002–6 mg/L)and SO_4(302–2179 mg/L)concentrations;this enabled the existence of typical species of uncontaminated streams(Brachysira neglectissima,Achnanthidium minutissimum);Group 3,with samples from unimpacted sites,showing low metal/metalloid(0–0.8 mg/L)and SO_4(10–315 mg/L)concentrations,high pH(7.0–8.4)and Cl contents(10–2119 mg/L)and the presence of brackish to marine species(Entomoneis paludosa).For similar conditions of acidity,differences in diversity,abundance and teratologies of diatoms can be explained by the levels of metals/metalloids.  相似文献   

6.
T3-induced Xenopus metamorphosis is an ideal model for detecting thyroid hormone(TH)signaling disruption of chemicals. To optimize the T3-induced Xenopus assay and improve its sensitivity and reproducibility, we intend to develop quantitatively morphological endpoints and choose appropriate concentrations and exposure durations for T3 induction.Xenopus laevis at stage 52 were exposed to series of concentrations of T3(0.31–2.5 nmol/L)for 6 days. By comparing morphological changes induced by T3, we propose head area,mouth width, unilateral brain width/brain length, and hindlimb length/snout-vent length as quantitative parameters for characterizing T3-induced morphological changes, with body weight as a parameter for indicating integrated changes. By analyzing time-response curves, we found that following 4-day exposure, T3-induced grossly morphological changes displayed linear concentration–response curves, with moderate morphological changes resulting from 1.25 nmol/L T3 exposure. When using grossly morphological endpoints to detect TH signaling disruption, we propose 4 days as exposure duration of T3, with concentrations close to 1.25 nmol/L as induction concentrations. However, it is appropriate to examine morphological and molecular changes of the intestine on day 2 due to their early response to T3. The quantitative endpoints and T3 induction concentrations and durations we determined would improve the sensitivity and the reproducibility of the T3-induced Xenopus metamorphosis assay.  相似文献   

7.
We developed the T3-induced Xenopus metamorphosis assay, which is supposed to be able to sensitively detect thyroid hormone(TH) signaling disruption of chemicals. The present study aimed to validate the T3-induced Xenopus metamorphosis assay by re-evaluating the TH signaling antagonism of tetrabromobisphenol A(TBBPA), a known TH signaling disruptor. According to the assay we developed, Xenopus tadpoles at stage 52 were exposed to 10–500 nmol/L TBBPA in the presence of 1 nmol/L T3. After 96 hr of exposure, TBBPA in the range of 10–500 nmol/L was found to significantly inhibit T3-induced morphological changes of Xenopus tadpoles in a concentration-dependent manner in term of body weight and four morphological endpoints including head area(HA), mouth width(MW), unilateral brain width/brain length(ULBW/BL), and hind-limb length/snout-vent length(HLL/SVL).The results show that these endpoints we developed are sensitive for characterizing the antagonistic effects of TBBPA on T3-induced metamorphosis. Following a 24-hr exposure,we found that TBBPA antagonized expression of T3-induced TH-response genes in the tail,which is consistent with previous findings in the intestine. We propose that the tail can be used as an alternative tissue to the intestine for examining molecular endpoints for evaluating TH signaling disruption. In conclusion, our results demonstrate that the T3-induced Xenopus metamorphosis assay we developed is an ideal in vivo assay for detecting TH signaling disruption.  相似文献   

8.
Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of chlorpyrifos in the two conditions were 0.9–3.8 days (field) and 2.8–10.3 days (laboratory), respectively. The initial distribution of chlorpyrifos followed the increasing order of water < straw < soil, and soil was characterized as the major absorber. The ultimate residues in rice grain were below the maximum residue limit (MRL) with a harvest interval of 14 days. The chronic exposure for chlorpyrifos was rather low compared to the acceptable daily intake (ADI = 0.01 mg/kg bw) due to rice consumption. The chronic exposure risk from chlorpyrifos in rice grain was 5.90% and 1.30% ADI from field and laboratory results respectively. Concerning the acute dietary exposure, intake estimated for the highest chlorpyrifos level did not exceed the acute reference dose (ARfD = 0.1 mg/kg bw). The estimated short-term intakes (ESTIs) were 0.78% and 0.25% of the ARfD for chlorpyrifos. The results showed that the use of chlorpyrifos in rice paddies was fairly safe for consumption of rice grain by consumers.  相似文献   

9.
本研究以模式动物斑马鱼(Danio rerio)为受试生物,采用半静态水体暴露的方式研究了不同浓度壬基酚聚氧乙烯醚(NPEO)对斑马鱼雄性成鱼下丘脑-垂体-性腺轴(HPG轴)的影响.结果显示,考察浓度范围内的NPEO暴露可以显著上调斑马鱼脑中GnRH2、GnRHR1、GnRHR2、GnRHR4、FSHβ和LHβ基因,以及性腺中LHR基因的相对表达量.GnRHR和LHR基因表达量对较低浓度NPEO暴露较为敏感,其中GnRHR4和LHR基因表达量在低至0.001mg/L的NPEO暴露下即出现显著上调.0.1和10mg/L NPEO暴露可以显著抑制斑马鱼精巢中CYP17基因的表达量,而10mg/L NPEO暴露则可以显著诱导CYP19a基因的表达量.GnRH相关调控基因表达量的上调,表明NPEO暴露可以诱导下丘脑分泌GnRH,进而刺激垂体分泌GtH.NPEO暴露诱导CYP19a基因的表达,促进了内源雌激素的合成.同时,NPEO通过抑制CYP17表达,可能抑制睾酮(T)的合成,干扰斑马鱼精巢中原有的性激素平衡.斑马鱼精巢内雌激素水平升高负反馈给垂体,刺激垂体分泌促性腺激素.由此表明,考察浓度范围内(0.001~10mg/L)的NPEO的暴露可以影响雄性斑马鱼成鱼HPG轴的反馈调节.  相似文献   

10.
Batch experiments were conducted to evaluate fluoride removal by Al,Fe,and Ti-based coagulants and adsorbents,as well as the effects of coexisting ions and formation of aluminum–fluoride complexes on fluoride removal by co-precipitation with alum(Al_2(SO_4)_3·18H_2O).Aluminum sulfate was more efficient than the other coagulants for fluoride removal in the pH range between 6 and 8.Nano-crystalline TiO_2 was more effective for fluoride removal than Al and Fe hydroxides in a pH range of 3–5.Coexisting anions in water decreased the removal of fluoride in the order:phosphate(2.5 mg/L) arsenate(0.1 mg/L) bicarbonate(200 mg/L) sulfate(100 mg/L) = nitrate(100 mg/L) silicate(10 mg/L) at a pH of 6.0.The effect of silicate became more significant at pH 7.0.Calcium and magnesium improved the removal of fluoride.Zeta-potential measurements determined that the adsorption of fluoride shifted the PZC of Al(OH)_3 precipitates from 8.9 to 8.4,indicating the chemical adsorption of fluoride at the surface.The presence of fluoride in solution significantly increased the soluble aluminum concentration at pH 6.5.A Visual MINTEQ modeling study indicated that the increased aluminum solubility was caused by the formation of AlF~(2+),AlF~(+2),and AlF_3complexes.The AlF_x complexes decreased the removal of fluoride during co-precipitation with aluminum sulfate.  相似文献   

11.
12.
为探究氟对斑马鱼甲状腺内分泌功能的干扰效应,本研究以雌性斑马鱼成鱼为研究对象,分别以不同浓度氟(0、20、 40、80 mg·L~(-1))暴露45 d和90 d,对斑马鱼的生长发育指数进行测定,用组织学方法对斑马鱼甲状腺组织结构进行显微观察,用酶联免疫吸附法检测血浆中T3和T4激素水平,并用实时荧光定量PCR方法检测HPT轴上内分泌相关基因的表达.结果显示,与对照组相比,氟暴露组雌性斑马鱼的生长发育指数随着暴露浓度和时间的增加而呈下降趋势(p0.05);甲状腺组织病变程度随着氟暴露浓度的增大和时间的延长而加重;氟暴露45 d时,T3和T4水平呈升高趋势,90 d时,T4水平呈下降趋势且在80 mg·L~(-1)组下降显著(p0.05);氟暴露45 d时,40 mg·L~(-1)组除crh处,其他mRNA表达均显著下降(p0.05),80 mg·L~(-1)组除tg、nis、ttr外其他mRNA表达均显著下降(p0.05);暴露90 d时tg、dio1、dio2的mRNA表达水平在40 mg·L~(-1)和80 mg·L~(-1)组显著上升(p0.05),ugt1ab mRNA表达在80 mg·L~(-1)组显著下降(p0.05).综上,氟可通过影响雌性斑马鱼的生长发育、甲状腺组织结构、激素水平及HPT轴上内分泌相关基因的表达,从而对其甲状腺内分泌功能产生一定程度的干扰,进而影响机体的生长发育.本研究结果对水环境中氟的生态毒性效应及风险评估提供了理论资料.  相似文献   

13.
Perfluorononanoic acid (PFNA) is a nine-carbon perfluoroalkyl acid widely used in industrial and domestic products. It is a persistent organic pollutant found in the environment as well as in the tissues of humans and wildlife. There is a concern that this chemical might be a developmental toxicant and teratogen in various ecosystems. In the present study, the toxic effects of PFNA were evaluated in zebrafish (Danio rerio) embryos. One hour post-fertilization embryos were treated with 0, 25, 50, 100, 200, 300, 350, and 400 μmol/L PFNA for 96 hr in 6-well plates. Developmental phenotypes and hatching rates were observed and recorded. Nineteen genes related to oxidative stress and lipid metabolism were examined using Quantitative RT-PCR and confirmed by whole mount in situ hybridization (WISH). Results showed that PFNA delayed the development of zebrafish embryos, reduced the hatching rate, and caused ventricular edema and malformation of the spine. In addition, the amount of reactive oxygen species in the embryo bodies increased significantly after exposure to PFNA compared with that of the control group. The Quantitative RT-PCR and WISH experiments demonstrated that mRNA expression of the lfabp and ucp2 genes increased significantly while that of sod1 and mt-nd1 decreased significantly after PFNA exposure. The mRNA expression levels of gpx1 and mt-atp6 decreased significantly in the high concentration group. However, the mRNA expression levels of both ppara and pparg did not show any significant variation after exposure. These findings suggest that PFNA affected the development of zebrafish embryos at relatively low concentrations.  相似文献   

14.
The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater.The reactor was operated in continuous feed mode from phases 1 to 3.The dissolved oxygen(DO)was controlled at 3.5–7 mg/L throughout the experiment.The biofilm reactor showed excellent nitritation performance after the inoculation of nitrifying sludge,with the hydraulic retention time being reduced from 24 to 7 hr.Above 90%nitrite accumulation ratio(NAR)was maintained in phase 1.Afterwards,nitratation occurred with the low NH_4~+–N concentration in the reactor.The improvement of NH_4~+–N concentration to 20–35 mg/L had a limited effect on the recovery of nitritation.However,nitritation recovered rapidly when sequencing batch feed mode was adopted in phase 4,with the effluent NH_4~+-N concentration above 7 mg/L.The improvement of ammonia oxidizing bacteria(AOB)activity and the combined inhibition effect of free ammonia(FA)and free nitrous acid(FNA)on the nitrite oxidizing bacteria(NOB)were two key factors for the rapid recovery of nitritation.Sludge activity was obtained in batch tests.The results of batch tests had a good relationship with the long term operation performance of the biofilm reactor.  相似文献   

15.
纳米ZnO对嗜热四膜虫的生态毒性研究   总被引:3,自引:1,他引:2  
为评价纳米ZnO的生态安全性,研究了其对嗜热四膜虫(Tetrahymena thermophila)的水生生态毒性. 显微成像表明,嗜热四膜虫食物泡是摄取纳米ZnO的主要部位. 低ρ(纳米ZnO)对嗜热四膜虫的增殖具有促进作用(即“兴奋反应"),其中100 mg/L时促进作用最明显,随着ρ(纳米ZnO)的进一步增加,其对嗜热四膜虫增殖的促进作用逐渐减弱. 随着时间的延长,“兴奋反应"逐渐减弱. 纳米ZnO能降低嗜热四膜虫的超氧化物歧化酶活性,且ρ(纳米ZnO)越高,抑制效应越强. 纳米ZnO使嗜热四膜虫自由基清除能力下降,可能是其产生毒害作用的主要原因之一.   相似文献   

16.
The potential risks of perfluorooctane sulfonate (PFOS) are of increasing ecological concern. Swimming performance is linked to the fitness and health of fish. However, the impacts of PFOS on swimming performance remain largely unknown. We investigated the ecotoxicological effects of acute exposure to PFOS on the swimming performance and energy expenditure of juvenile goldfish (Carassius auratus). The fish were exposed to a range of PFOS concentrations (0, 0.5, 2, 8 and 32 mg/L) for 48 hr. The spontaneous swimming activity, fast-start swimming performance, critical swimming speed (Ucrit) and active metabolic rate (AMR) of the goldfish were examined after exposure to PFOS. PFOS exposure resulted in remarkable effects on spontaneous activity. Motion distance was reduced, and the proportion of motionless time increased with increasing concentrations of PFOS. However, no significant alterations in the fast-start performance-related kinematic parameters, such as latency time, maximum linear velocity, maximum linear acceleration or escape distance during the first 120 msec after stimulus, were observed after PFOS exposure. Unexpectedly, although PFOS exposure had marked influences on the swimming oxygen consumption rates and AMR of goldfish, the U crit of the goldfish was not significantly affected by PFOS. This may result in a noteworthy increase in the energetic cost of transport. The overall results indicate that, in contrast to spontaneous activity, underlying swimming capabilities are maintained in goldfish after short-term exposure to PFOS, but energy expenditure during the process of swimming is dramatically aggravated.  相似文献   

17.
Amphibian metamorphosis provides a wonderful model to study the thyroid hormone (TH) signaling disrupting activity of environmental chemicals, with Xenopus laevis as the most commonly used species. This study aimed to establish a rapid and sensitive screening assay based on TH-response gene expression analysis using Pelophylax nigromaculatus, a native frog species distributed widely in East Asia, especially in China. To achieve this, five candidate TH-response genes that were sensitive to T3 induction were chosen as molecular markers, and T3 induction was determined as 0.2 nmol/L T3 exposure for 48 hr. The developed assay can detect the agonistic activity of T3 with a lowest observed effective concentration of 0.001 nmol/L and EC50 at around 0.118–1.229 nmol/L, exhibiting comparable or higher sensitivity than previously reported assays. We further validated the efficiency of the developed assay by detecting the TH signaling disrupting activity of tetrabromobisphenol A (TBBPA), a known TH signaling disruptor. In accordance with previous reports, we found a weak TH agonistic activity for TBBPA in the absence of T3, whereas a TH antagonistic activity was found for TBBPA at higher concentrations in the presence of T3, showing that the P. nigromaculatus assay is effective for detecting TH signaling disrupting activity. Importantly, we observed non-monotonic dose-dependent disrupting activity of TBBPA in the presence of T3, which is difficult to detect with in vitro reporter gene assays. Overall, the developed P. nigromaculatus assay can be used to screen TH signaling disrupting activity of environmental chemicals with high sensitivity.  相似文献   

18.
Highly active mesoporous TiO_2 of about 6 nm crystal size and 280.7 m~2/g specific surface areas has been successfully synthesized via controlled hydrolysis of titanium butoxide at acidic medium. It was characterized by means of XRD(X-ray diffraction), SEM(scanning electron microscopy), TEM(transmission electron microscopy), FT-IR(Fourier transform infrared spectroscopy), TGA(thermogravimetric analysis), DSC(differential scanning calorimetry) and BET(Brunauer–Emmett–Teller) surface area. The degradation of dichlorophenol-indophenol(DCPIP) under ultraviolet(UV) light was studied to evaluate the photocatalytic activity of samples. The effects of different parameters and kinetics were investigated. Accordingly, a complete degradation of DCPIP dye was achieved by applying the optimal operational conditions of 1 g/L of catalyst, 10 mg/L of DCPIP, pH of 3 and the temperature at 25 ± 3°C after 3 min under UV irradiation. Meanwhile, the Langmuir–Hinshelwood kinetic model described the variations in pure photocatalytic branch in consistent with a first order power law model.The results proved that the prepared TiO_2 nanoparticle has a photocatalytic activity significantly better than Degussa P-25.  相似文献   

19.
The objective of this study was to understand toxicity of mixture of nanoparticles (NPs) (ZnO and TiO2) and their ions to Escherichia coli. Results indicated the decrease in percentage growth of E. coli with the increase in concentration of NPs both in single and mixture setups. Even a small concentration of 1 mg/L was observed to be significantly toxic to E. coli in binary mixture setup (exposure concentration: 1 mg/L ZnO and 1 mg/L TiO2; 21.15% decrease in plate count concentration with respect to control). Exposure of E. coli to mixture of NPs at 1000 mg/L (i.e., 1000 mg/L ZnO and 1000 mg/L TiO2) resulted in 99.63% decrease in plate count concentration with respect to control. Toxic effects of ions to E. coli were found to be lesser than their corresponding NPs. The percentage growth reduction was found to be 36% for binary mixture of zinc and titanium ions at the highest concentration (i.e., 803.0 mg/L Zn and 593.3 mg/L Ti where ion concentrations are equal to the Zn ions present in 1000 mg/L ZnO NP solution and Ti+ 4 ions present in 1000 mg/L TiO2 NP solution). Nature of mixture toxicity of the two NPs to E. coli was found to be antagonistic. The alkaline phosphatase (Alp) assay indicated that the maximum damage was observed when E. coli was exposed to 1000 mg/L of mixture of NPs. This study tries to fill the knowledge gap on information of toxicity of mixture of NPs to bacteria which has not been reported earlier.  相似文献   

20.
The effect of salinity on sludge alkaline fermentation at low temperature(20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride(Na Cl, 0–25 g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand(SCOD) increased with salinity. The hydrolysate(soluble protein, polysaccharide) and the acidification products(short chain fatty acids(SCFAs), NH+4–N, and PO_4~(3-)–P) increased with salinity initially, but slightly declined respectively at higher level salinity(20 g/L or 20–25 g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt.Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH+4–N on SCFA accumulation was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号