首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
营养盐Si和水温影响浮游植物的机制   总被引:8,自引:0,他引:8  
分析Si和水温是如何影响浮游植物生长的变化和其集群结构的改变,探讨了Si和水温影响浮游植物生长变化的不同特点和其集群结构改变的不同侧面。本文以胶州湾为例,展示了浮游植物生长的变化和其集群结构的改变的过程,揭示了营养盐Si和水温影响浮游植物生长变化和其集群结构改变的机制,确定了营养盐Si和水温是海洋生态系统的健康运行的动力。  相似文献   

2.
营养盐硅在全球海域中限制浮游植物的生长   总被引:7,自引:2,他引:5  
对全球海域浮游植物的结构进行分析,发现浮游植物种群结构以硅藻和甲藻两大类为主,而硅藻是浮游植物的主体.以中国近海的海湾生态中浮游植物的组成为例子,发现硅藻在浮游植物中大约占80%~99%,甲藻在浮游植物中大约占20%~1%,其它藻类仅仅占5%~1%.通过硅藻和甲藻的生理和生态行为机制以适应不同的水环境的综合研究,发现硅藻的生理特征很大的优越于甲藻等其它非硅藻,这样,在营养盐供给充足的条件下,硅藻理所应当成为浮游植物的优势种.根据光照、水温、营养盐对浮游植物生长影响的研究结果和营养盐N、P、Si的生物地球过程,发现营养盐Si决定浮游植物生长的生理特征和其集群结构的改变过程,揭示了硅藻与甲藻相互交替的变化过程.目前,在人类活动的影响下,大海中营养盐N、P在迅速增长,营养盐Si受到限制,水域呈现富营养化.那么,采取何种措施使海洋生态能够持续发展,这是人类面临重要问题.  相似文献   

3.
胶州湾环境变化对海洋生物资源的影响   总被引:11,自引:1,他引:11  
根据近年来胶州湾水域的研究,分析胶州湾周围区域的人类活动、胶州湾水域的环境变化以及胶州湾浮游植物的生态变化过程,揭示了人类对生态环境的影响和营养盐Si、水温对海洋生态系统影响,确定了海洋生物资源下降的原因。研究结果表明,在人类的活动中,营养盐Si的缺乏和水温的上升就会引起海洋生态系统食物链的基础改变,就会引起海洋生态系统的正常运行改变,造成海洋生物资源的下降。作者认为,在人类的活动中,首先要考虑输入大海的营养盐Si,其次要关注大海的水温变化,为海洋生态的持续发展做出积极的贡献。  相似文献   

4.
水温对浮游植物群落结构的影响实验研究   总被引:1,自引:0,他引:1  
2012冬季,在香溪河中游建立水上水温实验系统,设置5个水温梯度(10、18、25、30、40℃),研究不同水温梯度下浮游植物群落结构变化。结果表明:浮游植物在设置水温梯度范围内均能大量增殖,但种类有所不同。10~30℃硅藻均有出现,绿藻在18~30℃下均能生长良好,蓝藻能在40℃的高水温下生长。25℃水体中藻类比增长率(μ)最大,为2.80。光照强度与叶绿素a浓度(Chl.a)响应关系较好。据此可知,水温影响浮游植物生长速率,且是导致香溪河库湾浮游植物群落演替的主要影响因素。光照是藻类生长和水华暴发的主导性因子。香溪河库湾冬季仍有暴发水华的可能,不能忽视冬季香溪河水体的观测。  相似文献   

5.
水温和营养盐增加对太湖冬、春季节藻类生长的影响   总被引:2,自引:1,他引:1  
为探讨水温和营养盐增加对冬、春季节太湖藻类生长和群落演替的影响,研究了不同水温(不增温、12.0、14.0、16.0、18.0、20.0℃)和不同营养盐浓度(低、中、高营养盐浓度)下藻类的生长及优势种群变化. 结果表明:藻类∑ρ(Chla)〔蓝藻、绿藻及硅藻中ρ(Chla)总量,下同〕随着水温的升高呈增加趋势,在20.0℃下∑ρ(Chla)为0.19~12.94μg/L,显著高于其他水温试验组(0.01~6.83μg/L);与较低水温(不增温、12.0、14.0℃)相比,较高水温(16.0、18.0、20.0℃)更能显著促进藻类对氮、磷营养盐的吸收利用. 添加营养盐后,硅藻、绿藻ρ(Chla)的日均值分别为0.52~4.07、0.17~0.52μg/L;湖水中∑ρ(Chla)呈增长趋势,并且浮游植物群落结构的优势种由绿藻转变为硅藻,硅藻ρ(Chla)所占比例从试验初始的50%升至75%~98%, 说明营养盐增加可加大硅藻的竞争优势;而绿藻的生长则可能同时受水温和营养盐共同作用的影响,因此太湖冬、春季节藻类的演替同时受到水温和营养盐的影响.   相似文献   

6.
海洋颗石藻是一类重要的浮游植物功能群,可同时进行光合作用和钙化作用,在全球海洋碳循环中起到重要作用。海洋是人类排放CO2一个重要的汇,大气CO2浓度迅速上升导致海洋酸化、升温、营养盐浓度及混合层内光照强度变化。这些复杂的环境变化与人类活动对海洋环境的其他扰动相叠加,同时作用于海洋浮游植物,对海洋颗石藻的生长施加多重压力,进而对海洋碳循环产生复杂的反馈效应。本文主要综述单一环境因子(CO2浓度、温度、营养盐及光照水平)以及全球气候变化下多重环境因子的复合作用对海洋颗石藻的生理生态学效应及其对海洋生物地球化学循环的潜在影响,并结合近年来的研究进展,分析这一热门研究领域未来的发展方向。  相似文献   

7.
海洋浮游植物是全球初级生产力的重要贡献者,它们的生物量主要受到氮、磷、铁等营养元素的限制。磷元素作为浮游植物所必需的元素,在寡营养海域的真光层海水中十分缺乏,是浮游植物生长的限制因子。磷元素的缺乏不仅直接影响浮游植物的生长繁殖及物种演替,还对海洋碳、氮生物地球化学循环产生深远影响。全球变暖加剧海水层化,进而减少垂直混合带来的营养盐补充。面对不断变化的海洋环境,浮游植物通过减缓细胞生长、加强磷吸收和储存、分解有机磷、磷脂替代、降低细胞对磷酸盐的依赖等方式,应对海洋环境中的磷限制。本文总结了近年来海洋浮游植物应对磷限制响应机制的最新研究进展,主要从生理响应和生态效应方面综述了海洋磷限制对浮游植物的影响以及浮游植物响应海洋磷限制的策略,希望对海洋浮游植物和海洋环境科学相关研究具有借鉴意义。  相似文献   

8.
通过剖析浮游植物生长特征和其集群结构与Si的重要性、Si的输入过程和生物地球化学过程以及Si限制浮游植物时间,揭示了在北太平洋的近岸水域,从秋天的雨季结束(11月)到春天的雨季开始(5月)之前,Si都限制浮游植物的生长,在北太平洋的远离近岸水域,浮游植物生长一直都受到Si的限制;探讨北太平洋风场变化的基本特点和规律与中国的沙尘暴发生、频率和强度,首次提出了北太平洋水域Si的提供系统,并且用框图模型说明了提供系统在运行过程中的每个流程。当北太平洋缺少Si时,该系统就向其水体输入大量的Si,来维持了北太平洋海洋生态系统的持续发展;为了补充输送到海洋的Si量减少,该系统提高了运行能力,造成内陆干旱、沙化面积扩大、沙尘暴强度增大。研究结果表明,在北太平洋水域,北太平洋的季风与北太平洋边缘的雨季在时间上密切相嵌,顺利完成近岸洪水和河流的输送与大气的输送之间的相互转换,一直保持向大海的水体输入大量的Si。而且,沙尘暴与北太平洋Si的缺乏在时间上紧密配合,其强度大小与Si缺乏的严重程度相一致。因此,人类在制定应对自然灾害的政策和战略时,要从人类的角度和地球的角度来共同考虑,有利于人类的健康生存,更应该有利于地球生态系统的持续发展。  相似文献   

9.
采用一次培养实验方法,研究了Cr(Ⅵ)污染物对海洋浮游植物生长的影响.结果表明高浓度Cr(Ⅵ)对8种浮游植物的生长普遍有抑制作用,而较低浓度Cr(Ⅵ)则易促进旋链角毛藻、青岛大扁藻及中肋骨条藻的生长.并且在Logistic生长模型的基础上结合Lorentz方程和GaussAmp方程,引入Cr(Ⅵ)污染物浓度项,建立Cr(Ⅵ)污染物条件下海洋浮游植物生长动力学模型,来描述Cr(Ⅵ)存在条件下海洋浮游植物的生长过程,其中Lorentz方程可描述Cr(Ⅵ)浓度的变化对浮游植物生长速率参数的影响,而GaussAm  相似文献   

10.
安邦河湿地是一个典型的寒区湿地,本文运用功能群的方法对其浮游植物季节变化进行研究,并运用多元分析方法分析其与环境因子的关系.安邦河湿地共有浮游植物种8门104种,划分为14个功能群,分别是C、D、E、F、H1、J、Lo、M、MP、N、P、SN、X1和Y.其中重要功能群是C、D、E、J、Lo、N、P和Y.浮游植物的功能群组成季节变化明显,春季以功能群E和Lo生物量所占比例最大,分别为27.45%和20.49%;夏季以功能群D、J、P占优,为28.59%、18.53%和19.47%;秋季以功能群J、P为主,占39.65%和13.34%.可见,安邦河湿地浮游植物功能群的季节变化呈现为E+Lo→D+J+P→J+P的特点,反映了水环境特征:春季低水温低营养盐、夏季高水温高营养盐且水体混浊、秋季水温和营养盐均较高.运用冗余分析(RDA)分析浮游植物功能群与环境因子之间的关系,结果显示水温(WT)、无机氮(DIN)和溶解性磷酸盐(SRP)是安邦河湿地浮游植物功能群季节变化的主要环境因子.  相似文献   

11.
In this study, 44 profiles of gross primary productivity(GPP) and sunlight, along with water temperature, Chlorophyll-a(Chla) and nutrients, were observed in Meiliang Bay of Taihu Lake, China, in the spring, summer, and fall seasons. Effects of water temperature, light,and nutrient concentration were examined in relation to the GPP-unit-Chla(GPP of algae per Chla). The results showed that the optimum temperature for the GPP of phytoplankton was 27.9°C, the optimal PNA-unit-Chla(photon number absorbed by phytoplankton per Chla) was 0.25(mol), and the HSCN-unit-Chla and HSCP-unit-Chla(half-saturation constants of nitrogen and phosphorus of algae per Chla) were 0.005(mg/L) and 0.0004(mg/L), respectively. The seasonal dependency of the effect of different factors on the GPP was analyzed. Compared with temperature and nutrients, light was found to be the most important factor affecting the GPP during the three seasons. The effect of temperature and nutrients on the GPP of phytoplankton has obvious seasonal change. In spring, temperature was the secondary factor affecting the GPP of phytoplankton, and the effect of nutrients may be negligible in the eutrophic lake on account of temperature limit, which showed that the GPP of algae was only affected by the physical process. In summer and fall, temperature didn't affect the GPP of algae, and the presence of nutrients was the secondary factor affecting the GPP of phytoplankton. From summer to fall, effect of phosphorus was weakened and effect of nitrogen was enhanced.  相似文献   

12.
以南极普里兹湾沉积物为研究对象,运用气相色谱技术,研究了生物标志物菜子甾醇、甲藻甾醇、长链烯酮对应指示的硅藻、甲藻、颗石藻等浮游植物的生产量和种群结构的历史变化,结合2001—2011年实测和遥感水体ρ(Chla)(Chla为叶绿素a)及SST(海水表层温度)数据,探讨了该湾浮游植物生产量时空变化特征及其影响因素. 结果表明:过去100多年间南极普里兹湾浮游植物总生产量(212.04~759.10 ng/g)〔以w(菜子甾醇)+w(甲藻甾醇)+w(长链烯酮)计〕和w(硅藻)所占比例(62.28%~87.13%)〔以w(菜子甾醇)所占比例计〕均呈上升趋势,而w(甲藻)所占比例(10.09%~27.98%)〔以w(甲藻甾醇)所占比例计〕和w(颗石藻)所占比例(1.97%~9.74%)〔以w(长链烯酮)所占比例计〕则呈下降趋势. 全球变暖背景下浮游植物种群变动通过改变南大洋对CO2的吸收进而影响全球碳循环. 水体ρ(Chla)与沉积生物标志物指示的浮游植物总生产量均具有湾内高、湾外低的空间分布特征. 湾内ρ(Chla)与SST的年际变化趋势相似,二者以2002—2003年和2009—2010年相对较高,SST分别为-0.30和0.01 ℃,ρ(Chla)分别为1.69和2.31 mg/m3;以2001—2002年和2010—2011年相对较低,SST分别为-1.19和-0.95 ℃,ρ(Chla)分别为1.08和0.79 mg/m3,表明该湾SST变化可较明显地影响浮游植物的生长.   相似文献   

13.
长江口区磷限制的现场实验   总被引:1,自引:0,他引:1  
采用营养盐现场加富培养的试验方法,在长江口区E4站取表层海水,添加不同浓度的磷酸盐进行现场培养,并实时监测了营养盐的消耗。根据营养盐浓度的差别判断藻类生长的限制性因子为磷酸盐的浓度。并分析了微微型藻类的生长情况,发现它们的生长不受磷酸盐限制的影响。  相似文献   

14.
于2012年秋季对庙岛群岛南部海域浮游植物和环境因子进行了调查,并利用多元统计分析了庙岛群岛南部海域浮游植物分布特征及其与水环境因子的关系。本次调查共发现浮游植物94种,细胞平均丰度为6.65106 cells/m3。浮游植物细胞丰度呈现从靠近陆域(南部,庙岛海峡)到海域(北部,长山水道)逐渐增加的变化特征。主成分分析(PCA)浮游植物的分布特征表明,浮游植物主要分布于调查海域的东部、北部和西部海域,即外海海域。冗余分析(RDA)讨论浮游植物的分布与环境因子的关系表明,水深、温度和总磷是影响庙岛群岛南部海域浮游植物分布的关键性环境因子。  相似文献   

15.
千岛湖浮游植物群落结构的垂向分布特征及其影响因素   总被引:1,自引:1,他引:0  
深水湖库浮游植物群落结构具典型垂向分异特征,是其水质和生态系统功能的考量要素之一;但对深水湖库浮游植物垂向分异的季节变化规律及其成因仍认识不清.以深水湖库千岛湖为例,通过春、秋两季全湖12个点位浮游植物群落结构及同步水质指标剖面变化的调查,揭示了典型深水湖库浮游植物群落结构的垂向分布特征及影响因素.结果表明,春季浮游植物丰度和叶绿素a最大值出现在次表层(2~5 m),而秋季浮游植物丰度和叶绿素a则在表层达到最大值,然后均随水深增加而下降.千岛湖浮游植物优势种属在垂向上呈现明显的分层特征,具体而言,春季表层和次表层主要以隐藻和假鱼腥藻为主,中层隐藻占据优势,而底层小环藻细胞丰度明显高于其他藻属;秋季表层优势属为假鱼腥藻和束丝藻,在次表层和中层,细鞘丝藻和假鱼腥藻占据优势地位,底层细鞘丝藻成为唯一优势属.此外,水体关键环境指标也存在明显的垂向变化,春季水体氮和磷营养盐浓度与水深呈负相关,而秋季则呈相反趋势;统计分析表明春季浮游植物丰度垂向分布与磷酸盐浓度显著正相关,秋季浮游植物丰度垂向分布则与光照强度呈现显著正相关,而水温、硝态氮和总氮则是驱动两季浮游植物优势属垂向分布的主要因素.综上所述...  相似文献   

16.
本文围绕珠江河口氮、磷营养盐的季节分布规律,采用皮尔逊相关分析、“营养盐-盐度”双端元模型探讨氮、磷营养盐的主要影响因子和潜在来源,并对珠江口海域水体进行富营养化评估。结果表明,珠江河口氮、磷营养盐浓度整体较高(均值分别为0.72 mg/L和0.021 mg/L),呈河口湾顶到外海递减的趋势;氮、磷季节变化差异显著,夏季高于其他季节;外海水团对氮的稀释、混合作用高于磷。“营养盐-盐度”双端元模型结果显示,在夏季和秋季,无机氮浓度减小的原因主要是海洋生物的吸收作用(叶绿素a浓度>10μg/L);而在秋季和冬季,其浓度减小的原因主要是河口水体混合和径流量小导致无机氮的输入减少。活性磷酸盐主要来自附近城市的污水排放,其浓度减小的原因主要是浮游植物吸收和泥沙吸附。研究海域浮游植物的生长主要受磷限制,水环境呈中度富营养化,因此,夏季爆发富营养化的概率很大。  相似文献   

17.
为研究昌黎生态监控区夏季浮游植物群落结构特征及其与环境因子关系,采用2005~2013年夏季(8月)昌黎生态监控区海域浮游植物及环境因子的监测资料,基于Arc GIS 10.0和Canoco软件平台,运用典范对应分析方法,对浮游植物群落结构进行分析.结果表明,近9 a共鉴定出浮游植物3门23科39属105种,其中,硅藻门16科32属90种,占浮游植物总数的85.7%;甲藻门共6科6属14种,占总种类数的13.3%;金藻门1种.各年的优势种存在很大差异,按照优势度Y值的大小包括辐射圆筛藻(Coscinodiscus radiatus)、柔弱角毛藻(Coscinodiscus debilis)、笔尖根管藻(Rhizosolenia styliformis)、柏氏角管藻(Cerataulina bergoni)、威氏圆筛藻(Coscinodiscus wailesii)、海链藻(Thalassiosira sp.)、三角角藻(Ceratium tripos)、洛氏角毛藻(Coscinodiscus wailesii)、中肋骨条藻(Ceratium tripos)等.夏季细胞丰度年际变化较大,呈现逐渐降低的趋势.浮游植物的多样性指数H'值介于0.015~3.889,均匀度指数J值介于0.009~1,年际变化幅度较小;各站位间物种分布不均匀,优势种较少且优势度较大.对浮游植物群落与环境因子进行典范对应分析(CCA),结果表明影响夏季浮游植物群落结构变化的环境因子包括水温、营养盐(磷酸盐、硝酸氮、氨氮)、盐度等,且是各个环境因子相互作用的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号