首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
水泥基材固化含油污泥的析出性能   总被引:2,自引:0,他引:2  
以水泥作为固化剂对中原油田文一污的含油污泥进行了固化处理,固化块的强度随着水泥量/污泥量的增大而增大,当水泥量/污泥量为2.0时,强度为16.07Mpa。通过正交试验。确定了浸泡时间及水泥量/污泥量是影响固化块浸出液中含油量的两个主要因素。在25℃、浸泡时间120h、水泥量/污泥量在1.0~1.8,浸出液含油量低于5mg/L。浸出液的有毒元素含量符合GB5085.3-1996的要求。  相似文献   

2.
以垃圾焚烧底灰为骨料的脱水污泥固化试验   总被引:1,自引:0,他引:1  
陈萍  冯彬  詹良通 《中国环境科学》2014,34(10):2624-2630
针对机械脱水污泥强度低,难以安全填埋的问题,采用生活垃圾焚烧底灰作为骨架材料和水泥、石灰、石膏作为固化剂,开展污泥固化试验研究,并通过无侧限抗压强度试验、耐水性试验、浸出毒性试验对固化效果进行评价.结果表明,较优的固化剂种类为水泥和石膏,掺入量为污泥干基的50%,无侧限抗压强度可以满足填埋要求.最优垃圾焚烧底灰掺入量为100%,固化污泥增容比小于1.0,能够起到减容作用.水泥、石膏固化污泥耐水性能均较好.浸出毒性试验结果表明,最优固化剂种类为石膏,浸出液Cu、Zn、Pb离子浓度及COD值均较原泥大幅降低,可以起到良好的稳定化效果,且浸出液pH值接近中性,对生态环境影响较小.  相似文献   

3.
考察了不同温度下新型E-D厌氧反应器处理餐厨垃圾的效能,并从污泥的粒径分布、金属离子含量等角度分析了反应器内污泥理化特性的变化。结果表明,在进水COD为5 000 mg/L、HRT为24 h、温度为25~30℃时,E-D反应器对餐厨垃圾COD的平均去除率在90%以上。当温度降低到20℃后,COD去除率仅为77%左右,出水COD高达1 000 mg/L以上,且出水中乙酸、丙酸、丁酸、异丁酸、戊酸的含量分别达到了287.1,546.7,89.8,156.8,93.4 mg/L;颗粒污泥中钙、镁含量分别减少为21.84,5.14 mg/L;其表面积平均粒径、体积平均粒径减少为97.9,333.3μm。这表明温度为20℃,对颗粒污泥的稳定性造成了负面影响,产甲烷菌的活性受到抑制,导致效能降低。  相似文献   

4.
刘润  安立超 《环境工程》2014,32(9):40-44
以普通的絮状污泥为接种污泥,保持COD不变,通过逐渐提高进水氨氮浓度,同时缩短沉淀时间,在SBR反应器中快速培养出具有短程硝化特性的好氧颗粒污泥。结果表明:保持ρ(COD)为300 mg/L,将进水ρ(NH+4-N)从50 mg/L逐渐提高至500 mg/L,沉淀时间从40 min逐渐缩短至2 min,并控制曝气量为200 L/h,pH值为8.0,温度为30℃,在第50天成功培养出了粒径为1.0~2.0 mm,SVI为20.1 mL/g的好氧颗粒污泥。在ρ(NH+4-N)为500 mg/L,碳氮比为3∶5时,对氨氮和COD去除率分别达到了90%和99%,亚硝态氮的积累率达到了92%,出水COD和氨氮均达到了理想的去除效果。  相似文献   

5.
以膨润土为辅助添加剂固化/稳定化污泥的试验研究   总被引:15,自引:1,他引:14  
朱伟  林城  李磊  大木宜章 《环境科学》2007,28(5):1020-1025
针对传统以水泥固化污泥,带来的水泥用量大与固化体的浸出液pH过高等问题,提出了以膨润土为添加剂辅助水泥固化/稳定化污泥的思路.通过开展无侧限抗压强度试验、毒性浸出试验,测量掺入膨润土后污泥固化体的强度、重金属浸出率、浸出液COD及pH值,研究该固化/稳定化方法的效果.结果表明,膨润土的掺入极大地提高了固化体的抗压强度,将掺入量为0.4(相对污泥的质量比)的水泥一半用膨润土替代时,固化体的强度提高了6左右.体积安定性也能够满足要求.随膨润土掺入量增加,固化体中锌、铅的浸出率与浸出液的pH值呈现不断减小的趋势,锌与铅的浸出率分别由6.9%下降至0.25%,9.6%下降至5%,pH值由12.3下降至12.1.在强碱条件下及烘干或风干条件下,铜会随着有机物的分解而析出,从而增加铜的浸出率,而膨润土的加入能弥补水泥造成的强碱环境及风干或烘干过程对固化污泥中铜的稳定产生的不利影响.  相似文献   

6.
用生活污水在常温下培养厌氧颗粒污泥的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
用COD为300mg/L左右的生活污水在常温下(>17·C)启动5L升流式厌氧污泥床(UASB)反应器.接种消化污泥5.6keSS/m3,初始有机容积负荷为0.6kgCOD/(m3·d),水力停留时间为8h.稳定后逐步增加有机容积负荷.一个月后即有颗粒污泥出现,50d后反应器达到稳定的处理效果.运行145d后,污泥中大于0.5mm的颗粒污泥占总重量的73.5%,最大粒径可达3mm,比重为1.07SVI在20左右,污泥中产甲烷菌主要是索氏甲烷丝菌.用颗粒化后的反应器处理生活污水时,水力停留时间可短至6~4h,当水温不低于17℃时,出水COD均低于100mg/L,可达到排放要求。   相似文献   

7.
利用水泥基和电厂废弃脱硫石膏研制适用于新疆地区经济高效污泥固化剂,采用单因素多水平和响应面分析的方法研究硅酸盐水泥、脱硫石膏、粉煤灰、过硫酸钾(KPS)的掺比和固化时间对污泥固化体无侧限抗压强度的影响,运用Design-expert优化污泥固化体的无侧限抗压强度,并利用扫描电镜分析污泥固化体的微观结构。实验表明:水泥基和电厂废弃的脱硫石膏能够有效改善污泥固化体的抗压强度;当工程应用中,需要抗压强度最佳时的掺比为m(污泥)∶m(水泥)∶m(脱硫石膏)∶m(粉煤灰)∶m(KPS)=100∶3∶1∶1∶0. 5、固化时间为3 d;而需要经济最优时的掺比为m(污泥)∶m(水泥)∶m(脱硫石膏)=100∶1∶1、固化时间为7 d,处理每吨污泥的药剂成本为5~6元。  相似文献   

8.
含砷飞灰固化处理研究   总被引:2,自引:0,他引:2  
通过试验确定了胶凝材料的组成体系,探讨了影响胶凝材料性能的主要工艺参数,确立的最佳固化工艺条件为:水泥∶砂子∶飞灰= 57.6∶40∶2.4,水灰比为0.28,水泥采用标号为42.5的快硬硫铝酸盐特种水泥,以硫化钠作为添加剂,其用量为飞灰/硫化钠= 1.5.在最佳配比和最佳养护条件下,固化体在实验室条件下抗压强度可达2.5 MPa,砷的浸出浓度为0.83 mg/L,达到了相关的填埋标准.  相似文献   

9.
为了减少生活垃圾焚烧飞灰中重金属等污染物对环境的危害,以粉煤灰和脱硫石膏为原料对生活垃圾焚烧飞灰中重金属进行安全处理。采用机械力化学法探究了脱硫石膏与垃圾焚烧飞灰掺加比、(脱硫石膏+垃圾焚烧飞灰)与粉煤灰掺加比、球磨频率、球磨时间和养护温度参数对固化体性能的影响。并通过XRD和FTIR手段对垃圾焚烧飞灰中重金属的固化机制进行了研究。研究结果表明,采用机械力化学法能够显著提升粉煤灰的活性,并使制备出的固化体具有较高的抗压强度。当脱硫石膏与垃圾焚烧飞灰掺加比为1∶4,(脱硫石膏+垃圾焚烧飞灰)与粉煤灰为2∶3,球磨频率30 Hz,球磨时间2 h,养护温度60℃时,固化体28 d抗压强度达到22.3 MPa,并采用AAS测得固化体浸出液中Cd和Zn重金属的浸出量分别仅为0.015 mg/L和0.008 mg/L,均远低于GB 5085.3-2007规定限值。XRD和FTIR表征结果表明,固化体水化过程中生成了水化硅酸钙(C—S—H)和钙矾石(AFt)并分别主要以物理包裹和化学吸附的形式实现了垃圾焚烧飞灰中重金属的稳定化。  相似文献   

10.
对于COD 1 500 mg/L,Ca2+浓度为1 600 mg/L的明胶高钙废水,通过在生物处理中加入绿色阻垢剂聚环氧琥珀酸(PESA),研究其对污泥浓度MLSS、污泥容积指数SVI、出水Ca2+保留率、污泥钙含量及化学需氧量COD去除率的影响,确定其对高钙废水生物处理过程中污泥减量化的效果。结果表明:加入PESA的反应器中,COD去除率达到60%以上;MLSS低于普通生物反应器,可抑制污泥增长量50 mg/(L·d),减量化效果为27%;SVI值经18 d运行后明显上升,说明PESA可表现出较大的反钙离子压缩性,使得污泥体积释放,絮凝、吸附,传质能力增强;Ca2+保留率基本维持在100%,污泥中钙含量明显低于空白生物反应器,当污泥中钙含量低于5%时,钙离子架桥作用减弱,需要增加沉淀时间为2 h来保证出水浊度,絮凝能力下降,应及时排泥,污泥停留时间应该控制在21 d左右。PESA能阻止曝气过程中析出的钙盐附着在活性污泥表面,保持污泥的良好活性,从而达到污泥减量化目的。  相似文献   

11.
污泥-焚烧底灰混合固化配方及强度增长机理   总被引:1,自引:0,他引:1       下载免费PDF全文
污泥与垃圾焚烧底灰混合固化是一种以废治废的处置方式.针对水泥固化污泥早期强度高、石膏固化污泥后期效果好的特点,分别采用水泥、石膏、水泥+石膏为固化剂,和不同掺量的垃圾焚烧底灰,开展脱水污泥固化试验研究.对固化污泥的无侧限抗压强度、含水量、增容比、浸出毒性及COD、p H值进行了测试,并用扫描电镜分析了固化污泥微观结构的变化.测试与分析结果表明:脱水污泥的较优固化材料配方为100%垃圾焚烧底灰、25%水泥和25%石膏,固化污泥的强度和含水量满足填埋要求,且增容比小,浸出毒性大幅降低.固化污泥的早期强度主要来源于垃圾焚烧底灰的骨架作用和吸水作用,后期强度增长主要依靠固化剂的胶凝作用和垃圾焚烧底灰的火山灰作用;其中钙矾石的生成是固化污泥强度增长的重要因素之一.  相似文献   

12.
Toxicity characteristic leaching procedure(TCLP) of zinc plating sludge was carried out to assess the leaching potential of the sludge and the leachates were analyzed for heavy metals. The concentration of zinc, chromium, and lead in the leachate were 371.5 mg/L, 1.95 mg/L and 1.99 mg/L respectively. Solidification of zinc sludge was carried out using four different binder systems consisting of cement mortar, fly ash, clay and lime and cured for 28 d, The ratio of sludge added varied from 60% to 80% by volume. The solidified products were tested for metal fixing efficiency and physical strength. It was observed that the volume of sludge added that resulted in maximum metal stabilization was 60% for all the combinations, above which the metal fixation efficiency decreased resulting in high values of zinc in the leachate. Addition of 5% sodium silicate enhanced the chemical fixation of metals in all the binder systems. Among the four fixing agents studied, mixture of fly ash: lime, and cement mortar: lime stabilized zinc and other metals in the sludge effectively than other combinations. Addition of lime increased the stabilization of zinc whereas cement mortar increased the strength of the solidified product.  相似文献   

13.
课题依托哈尔滨某污水处理厂,通过建立L9(34)正交试验,选取水泥、石灰、煤灰掺入比例以及养护时间为主要影响因素,以固化块的抗压强度和COD浸出浓度为评价指标,得到各因素的影响度大小排序为:水泥养护天数石灰煤灰,优化固化条件为水泥掺入比例15%,石灰掺入比例2%,煤灰10%养护天数6 d。以此为基础进行延展实验,探讨以上因素对污泥固化效果的影响,获得最佳配方。  相似文献   

14.
为了实现矿山酸性废水中和渣资源化,采用硅酸盐水泥(32.5R和42.5R)、铝酸盐水泥3种胶凝材料固化中和渣制备建筑砌块。在抗压强度和浸出毒性测定的基础上,通过X-射线衍射分析、热重分析等实验手段,探究了水泥矿物水化及其与中和渣中主要物质作用机理。研究结果表明,当m(水泥)∶m(干污泥)∶m(水)=1∶0.5∶0.75时,3种胶凝材料制备免烧砖的抗压强度均达到25 MPa以上,明显高于普通黏土烧结砖。  相似文献   

15.
Strength development,leachability and microstructure of heavy metals from the solidified waste using synthesis rice husk ash (sRHA) and lime blended at the weight ratio of 1:1 were used as binders.The heavy metal-containing sludge was used at the level of 0 wt.%,30 wt.%,and 50 wt.% dry weight,respectively.The sample specimens with and without 1.5 wt.% of sodium silicate (SiO 2 /Na 2 O=1.0) were cured under the ambient condition and elevated temperature curing at 50°C for 24 hr.Experimental results showed that the introduction of sodium silicate solution and elevated temperature curing to sRHA-based solidified waste containing 30 wt.% of heavy metal sludge gave one day strength of 20 kg/cm 2 compared to 0.9 kg/cm2 for the control sample.XRD patterns indicated that most metal-sulfides present in the sludge were appeared in the solidified waste and SEM coupled with EDX techniques reveal these metal-sulfide particles were trapped within the lime-sRHA matrices.In addition,cumulative leaching behavior by tank test (EA NEN 7375:2004) showed that solidified waste containing up to 30 wt.% of heavy metal sludge was suitable to dispose in a secured landfill.  相似文献   

16.
酵母菌处理系统中氮缺乏引起的污泥膨胀控制   总被引:7,自引:2,他引:5  
研究了酵母菌处理色拉油加工废水系统中投加氮源对处理效果的影响及对污泥膨胀的恢复作用批量实验结果表明:①添加氮源有助于提高去除效果,碳氮比(COD/N)为50/1~20/1的条件下,油去除率最高,达90%以上;②添加氮源能够改善污泥沉降性,COD/N比为50/1、20/1时污泥沉降性明显优于100/1、200/1和不加氮的条件.连续试验中按COD/N为20/1添加氮源,污泥体积指数(SVI)稳定在100~200,油和COD去除率分别达95%和90%以上.氮缺乏色拉油加工废水中添加氮源是控制污泥膨胀的有效方法之一.  相似文献   

17.
油基岩屑无害化处理技术研究   总被引:3,自引:0,他引:3  
本文介绍了页岩气井水平段钻井过程中产生的油基岩屑处理现状及水泥窑协同处置现状,探讨了采用水泥窑协同处置油基岩屑的可行性。研究表明,采用水泥窑协同处置可解决油基岩屑无害化处理后重金属含量较高、利用途径受限的问题,在钻井现场采用岩屑甩干机对油基岩屑进行预处理后,通过水泥窑系统分解炉和窑尾烟室投料点加入水泥窑进行煅烧,油基岩屑所含油类物质在水泥窑内燃烧彻底分解,岩屑煅烧后成为熟料;焚烧过程不产生废渣,水泥窑协同处置过程中产生的烟气可依托现有废气治理措施得到控制,不新增废气治理措施;油基岩屑所含重金属离子固化在熟料矿物相晶格中,通过控制投加量,可使水泥产品满足相应的标准。  相似文献   

18.
全烧垃圾流化床炉飞灰制备免烧砖的性能研究   总被引:3,自引:0,他引:3  
开展了水泥固化全烧垃圾循环流化床焚烧炉飞灰特性及其制备免烧砖的研究.同时,分析了飞灰的特性,研究了水泥用量对砖体抗压强度和重金属浸出毒性的影响,并对固化前后飞灰在不同p H值溶液环境下的重金属渗滤特性和基于改进RCR连续提取法的重金属形态分布进行了对比研究.结果表明:飞灰中Cd、Cu、Pb、Ni的浸出浓度分别达到1.76、60.29、5.36、1.48 mg·L-1,远超出生活垃圾填埋标准的规定,Cd、Zn、Cu的酸可交换态部分很高,分别为48%、21.26%、20.72%.水泥基材具有良好的稳定效果,添加量达到30%时,免烧砖中重金属的浸出毒性已远低于标准值.随着水泥掺量的提高,免烧砖的抗压强度呈上升趋势,当水泥比例为30%时,强度可达到12.8 MPa,35%水泥比例的砖体,其抗压强度则达到国标建筑用砖的MU15级.与原始飞灰相比,砖体中重金属在不同渗滤液p H下的浸出趋势并未改变,浸出量却显著下降,p H的适应范围变宽.另外,重金属中酸可交换态部分降至低于1%,主要转变成了可还原态,对环境的污染风险大幅降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号