首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
用三烷基胺的煤油溶液为萃取剂,用1.0mol/LNaOH水溶液为反萃剂,对含重金属离子Cr^6+废水进行了反应萃取处理的初步研究,试验结果表明,通过该萃取工艺,废水中的Cr^6+浓度可降低到0.5mg/L以下,达到有关排放标准。  相似文献   

2.
在静置换水条件下,研究了重金属对方形网纹溲的急性毒性和生活周期毒性。Hg^2+、Cu^2+、Cr^6+和Zn^2+在25±1℃下对方形网纹溲的48hEC50分别为0.0100、0.0254、0.1445和0.2828mg/L,Hg^2+对方形网纹溲的7d生活周期毒性试验,以存活、生长和生殖为毒性指标,未觉察反应浓度(NOEC)为5.91μgNL,最低觉察反应浓度(LOEC)为11.83μg/L,其  相似文献   

3.
混凝法预处理糖精钠废水研究   总被引:8,自引:1,他引:8  
无机混凝剂硫酸铝,硫酸铁分别与有机絮凝剂聚丙烯酰胺配合使用处理糖精钠废水,并进行处理效果比较,结果表明,硫酸铝和聚丙烯酰胺配合使用的处理效果好,当硫酸铝投加量为3.2g/L,聚丙烯酰胺投加量为8mg/L,pH为6时,废水CODcr可从41300mg/L减小到16800mg/L,去除率达61%;Cu^2+浓度从32.73mg/L降至3.17mg/L,去除率达90.3%,且提高了BOD5/CODcr值  相似文献   

4.
锌湿法冶炼废水中锌,镁的连续测定   总被引:2,自引:0,他引:2  
本文介绍冶炼废水中锌和镁进行了测定方法的实验研究。实验证明:在pH5.5和pH10的两种缓冲介质中,以2.0g/LXO指示剂0.15mg/L和5g/LEBT指示剂1.5mg/L为指示剂,在掩蔽Fe^3+和Cd^2+、Ca^2+后,进行EDTA络合滴定,结果准确、可靠,且方法具有简单迅速的优点。  相似文献   

5.
在硫磷混酸介质中,Cr^6+与二苯卡巴反应生成的紫红色配合物,在-0.2V处产生一灵敏极谱波,其2次导数的波高与Cr^6+浓度在0.004-0.25mg/L范围之间呈线性关系,检出下限为0.002mg/L,此法应用于环境水样及含金标样中总铬的测定,结果与其他测定方法基本吻合。  相似文献   

6.
海带生物吸附含铜废水的试验   总被引:1,自引:0,他引:1  
利用海带作为生物吸附材料对含Cu^2+废水处理进行了研究。0.2g颗粒直径为0.18~0.42mm的海带粉末,在100mL Cu^2+浓度为100mg/L、pH为3.0~6.0溶液,吸附容量Qmax为41.5~60.0mg/g,Cu^2+的去除率为83.9%~89.3%。pH值是影响吸附的主要因素,最佳吸附pH值为3.0~6.0。  相似文献   

7.
酸解一氧化絮凝法处理二基二硫合成废水这一新工艺,能够脱除不可生化有机废水中高浓度的COD和S^-2。本工艺较佳运行条件是:酸解一级处理,PH值1.5以下,反应时间为1.0-2.0h;反应温度100-120℃,二级氧化絮凝处理;PH值在10-12之间;反应时间2.0-3.0h,在此条件下,当进水COD浓度为11000mg/L和S^+240000mg/L以下时,出水完全可以达到国家规定的排放标准。CO  相似文献   

8.
水解酸化——生物接触氧化处理合成橡胶废水研究   总被引:8,自引:0,他引:8  
采用水解酸化-生物接触氧化相结合的处理工艺处理合成橡胶废水,结果表明,在进水CODcr和BOD5分别656mg/L和286mg/L的情况下,出水平均值分别为82mg/L和28.6mg/L平均去除率分别达到87.5%和90%,水解酸化可将民橡胶废水的可生化性同0.44提高至0.56。  相似文献   

9.
味精浓度水稀释液厌氧消化—SBR工艺处理   总被引:5,自引:0,他引:5  
周群英  杨琦 《上海环境科学》1995,14(7):13-15,27
采用UBF-SBR工艺处理味精浓度水稀释液,UBF段的进水CODcr18900mg/L,NH3-N1500mg/L,有机容积负荷率9.45kg(COD)/m^3.d时,CODcr平均去除率为84.5%,SBR段的进水CODcr2950mg/L,NH3-N1678mg/L,曝气65h,DO为4~4.5mg/L,停曝气时DO在0.3mg/L以下,CODcr和NH3-N的平均去除率分别为92%和99.4  相似文献   

10.
仿真丝生产中碱减量及染整废水的治理   总被引:9,自引:0,他引:9  
采用“物化-兼氧水解-好氧-絮凝沉淀”处理合纤物仿真丝生产的碱减量,印染废水。碱减量废水在pH〈14,CODCr17800mg/L,水量50t/d的条件下,经预处理后与其余废水混合组成混合废水,水量1858t/d,pH6.6,CODCr,966mg/L,BOD5310mg/L的条件下,进入2000t/d的生产装置处理,出水pH6.5,CODCr65.8mg/L,BOD7.54mg/L,SS19.9  相似文献   

11.
用铬浸渣烧硅酸盐水泥解毒的可行性探讨   总被引:4,自引:0,他引:4  
席耀忠 《环境科学》1991,12(5):27-31
本文测定了经高温窑炉烧成的铬渣水泥的Cr~(6+)去除率,并从水泥混凝土实际使用情况出发,设计了毒性鉴别方法,分析了整块和破碎的铬渣水泥石水溶性Cr~(6+)的溶出量,观察了大气日晒条件下已还原铬的稳定性.结果表明,经水泥窑煅烧,铬渣水泥的Cr~(6+)去除率达90%以上;当水泥中总Cr_2O_3小于1%时,铬渣水泥石溶出的Cr~(6+)浓度不会超过污水排放标准;当总Cr_2O_3小于0.4%时,水泥石表面的Cr~(6+)溶出量不会超过饮用水标准.铬渣水泥中已被还原的铬在大气、日晒的长期作用下是稳定的.  相似文献   

12.
铬对厌氧生物处理过程的抑制作用   总被引:7,自引:3,他引:4  
本文研究了重金属铬离子(Cr~(3+)和Cr~(6+))对厌氧生物处理过程抑制作用的规律.结果表明,Cr~(3+)日引入量分别在低于20mg/L,36—109mg/L和高于145mg/L时,厌氧体系分别受到轻度、中度和重度抑制(即引起产气率下降分别为低于20%、20—40%和大于40%);日引入Cr~(6+)浓度小于14mg/L,无抑制作用;36mg/L或高于70mg/L时,厌氧体系分别受到中度或重度抑制.单位污泥干重所允许承受Cr~(3+)和Cr~(6+)日引入量分别为低于0.1%(62.6 mg-N/kg)和0.04%(44.4mg-N/kg).在引入Cr~(3+)的情况下,维持厌氧体系正常运行的溶解态铬离子浓度应小于0.5mg/L,超过2.5mg/L时,体系受到重度抑制;在引入Cr~(6+)的情况下,允许浓度为 0.4 mg/L,超过2.8 mg/L为重度抑制.  相似文献   

13.
以聚丙烯酸钠为络合剂,研究Hg2+和Cd2+混合溶液的络合超滤分离行为.考察了pH值、负载比(LR)及外加盐浓度对混合体系分离的影响.结果表明,当pH值从5增大到7.5时,2种离子分离系数(S)逐渐下降,最适pH值为5;当LR从0.01增大到2时,S逐渐升高到最大值,此后迅速降低,LR=1.5时S达到最大值;Na2SO4的加入影响S值.控制混合溶液pH=5及LR=1.5,当体积浓缩因子为15时,截留液汞浓度(Cr, Hg)从30mg/L线性递增至444.9mg/L,截留液镉浓度(Cr, Cd)仅从30mg/L升高至35.4mg/L,S值约为227.浓缩液随着洗涤水体积增大,Cr, Hg基本不变,而Cr, Cd下降至5.24mg/L.收集各渗透液,调整至pH=6及LR=0.033予以浓缩,浓缩13倍时,Cr, Cd从27.37mg/L升高到354.7mg/L.  相似文献   

14.
溶解氧对膜生物反应器处理高氨氮废水的影响   总被引:4,自引:0,他引:4  
采用膜生物反应器(MBR)处理高氨氮有机废水,探讨了溶解氧(DO)对有机物、氨氮、总氮等去除效果的影响。当进水COD1500mg/L,NH4+-N150mg/L,TP为15mg/L,pH7.5~8.0,MLSS控制在6000~7000mg/L,DO在0.5~4mg/L时对COD的去除效果没有明显影响,都可高达95%;在DO为4.0和2.0mg/L时对NH4+-N的去除率都很高,最高可达99.17%,在DO为0.5mg/L时明显降低,最低降至48.30%。在DO2.0mg/L时,取得了较好的同步硝化反硝化效果,COD、NH4+-N、TN去除率分别高达97%、97%、68%。MBR中硝化反应的比氨氮消耗速率与氨氮浓度成零级反应动力学,比氨氮硝化速率为0.0979/d,比常规处理系统中的污泥硝化活性高。  相似文献   

15.
常见重金属对费氏弧菌的生物毒性研究   总被引:1,自引:0,他引:1  
以费氏弧菌作为毒性测试物种,研究Hg2+、Pb2+、Cu2+、Cd2+、Zn2+、Cr6+对费氏弧菌的生物毒性.同时,对相对发光强度和金属离子浓度进行线性回归后计算了EC50值(半数效应浓度值),并比较了该菌种对各金属化合物的敏感度差异.结果表明,发光菌的相对发光强度均与重金属离子浓度呈负相关,线性相关系数为0.8764~0.9730.Hg2+、Pb2+、Cu2+、Cd2+、Zn2+、Cr6+对费氏弧菌的EC50分别为0.045、0.181、0.300、0.117、0.614、23.000 mg/L,毒性大小依次为Hg2+ >Cd2+ >Pb2+ >Cu2+ >Zn2+ >Cr6+,可见Hg2+对费氏弧菌的毒性最大,但该发光菌对Cr6+的敏感性较小.  相似文献   

16.
粉煤灰处理Cr~(6+)废水的试验研究   总被引:2,自引:0,他引:2  
利用电厂粉煤灰进行了处理含铬(VI)废水试验,探讨了粉煤灰投加量、pH值、接触时间、温度和含铬浓度等因素对除铬效果的影响。结果表明,在废水pH=10左右、Cr6+浓度<100mg/L,粉煤灰的用量140g/L时,在常温下吸附处理2h,对铬的去除率可达到72%以上。粉煤灰吸附处理含铬废水符合Freundlich等温式,以物理吸附为主。对于低浓度含铬(VI)的废水,处理后可达标排放。  相似文献   

17.
铬铜镍在芦竹中的富集与分布   总被引:12,自引:1,他引:12  
研究芦竹(Arundo donax Linn)在Cr、Cu、Ni污染湿地中的富集能力以及三种重金属在植株中的分布情况。结果表明:生长期8个月后,芦竹在20.4和55.0mg/kgCr污染湿地中,对Cr的富集量:根13.86mg/kg(DW)和15.29mg/kg(DW);茎1.37mg/kg(DW)和3.59 mg/kg(DW);叶6.37mg/kg(DW)和8.22mg/kg(DW)。在51.3和105mg/kgCu污染湿地中,对Cu的富集量:根35.6mg/kg(DW)和44.1mg/kg(DW);茎3.30mg/kg(DW)和4.14mg/kg(DW);叶6.75mg/kg(DW)和8.86mg/kg(DW)。在61.0和103.0mg/kgNi污染湿地中,对Ni的富集量:根20.37mg/kg(DW)和26.74mg/kg(DW);茎11.86mg/kg(DW)和13.03mg/kg(DW);叶12.2mg/kg(DW)和15.77mg/kg(DW)。三种金属在植株中的分布情况很相似,都是根>叶>茎,生物富集系数(Bioconcentration factor)均<1。可以认为芦竹对这三种重金属能富集,但不具备超富集植物的特征。  相似文献   

18.
以广东省潮州市彩塘不锈钢电镀区的水体为例,研究了电镀废水、底泥的Cr分布特征和基本特性,并针对废水基本特性,采用FeSO4进行调控,探讨如何将Cr6+转化Cr3+以及除去废水中Cr的途径。电镀废水中的总Cr和Cr6+分别为57.3mg/L、42.4mg/L,远远超过了电镀废水排放标准37、83倍,导致河流水体Cr6+超过环境质量标准。电镀废水具有低pH值和高电导率。电镀区底泥Cr大大超过背景值,底泥中的Cr残渣态含量最高,其次是氧化态、还原态,可溶态和碳酸盐态含量低,说明了底泥存在潜在危害性。FeSO4能有效地将Cr6+还原为Cr3+,Fe2+/Cr6+摩尔比为4具有很好转化效率,还原充分后将pH值调至9,对Cr3+具有最好的沉淀效果,通过该途径有效除去废水的Cr。  相似文献   

19.
制备了巯基纤维素并用其对含Cr(VI)离子的溶液进行了静态吸附实验.研究了pH值、吸附时间、反应温度、吸附剂用量等因素对吸附性能的影响.结果表明:在pH值为2、Cr(VI)浓度为50 mg/L和吸附剂为0.5 g时,常温条件下吸附6h后,Cr(VI)去除率达到99.2%,吸附反应符合Langmuir和Freundlic...  相似文献   

20.
Cr(VI)是一种毒性极强的重金属,利用微生物还原Cr(VI)为Cr(III)是解决Cr(VI)污染的一条有效途径。菌株Enterobacter sp. L6是一株分离自海洋沉积物中的异化铁还原细菌。接种时细胞密度A600为(0.25±0.03),培养12 h,A600达到(1.04±0.05),累积产生Fe(II)浓度为(0.80±0.03)mmol/L;随着培养时间的延长,细胞密度A600和累积产生Fe(II)浓度开始下降;培养36 h时,细胞密度A600为(0.81±0.04),累积Fe(II)浓度(0.63±0.01)mmol/L。在厌氧培养过程中,菌株L6细胞生长与异化还原Fe(III)性质存在明显的偶联关系。利用菌株L6的异化铁还原性质还原Cr(VI)的实验结果表明,在Cr(VI)浓度0~24 mg/L范围内,异化铁还原细菌L6都能进行细胞生长并还原Cr(VI)。Cr(VI)浓度为4、8和12 mg/L时,菌株L6对Cr(VI)还原率可达到100%,当Cr(VI)浓度为16 mg/L时,Cr(VI)还原率是参比[未添加Fe(III)]的2.11倍。Cr(VI)浓度为20、24 mg/L时,仍能够还原Cr(VI)。以Fe(III)为电子受体的异化铁还原细菌能明显提高Cr(VI)还原率,这为利用微生物修复Cr(VI)污染提供实验数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号