首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
陈广银  郑正  常志州  王海芹  叶小梅 《环境科学》2012,33(12):4406-4411
以互花米草厌氧发酵后的沼渣为原料,采用紫外扫描、FTIR、XRD、1H-NMR、13C-NMR和其他一些常规分析手段研究了5%NaOH溶液固态处理前后,互花米草沼渣的物质结构、物质组成以及水浸提液理化特性的变化.结果表明,经5%的NaOH溶液处理48 h后,互花米草沼渣的骨架结构并未受到破坏,只是某些官能团的结构受到破坏;碱处理后,互花米草沼渣中木质素碎片化,木质素的芳香环结构受到不同程度的破坏,但木质素含量稍有增加;碱处理破坏了互花米草沼渣中纤维素的结晶结构,形成可被厌氧微生物破坏的类似结晶区结构,结晶区的比例增加,纤维素相对含量增加;碱处理后,互花米草沼渣中羧酸盐破坏严重,沼渣中羧基碳含量降低,烷烃类物质也受到一定的破坏,半纤维素相对含量降低;碱处理后,互花米草沼渣中烷基碳和芳香碳含量均降低,烷氧碳含量增加,芳香度降低,表明碱处理后互花米草沼渣的脂肪族特性增强,可生物降解性能提高.  相似文献   

2.
NaOH处理对互花米草高温干式厌氧发酵的影响   总被引:3,自引:1,他引:2  
陈广银  郑正  常志州  叶小梅  罗艳 《环境科学》2011,32(7):2158-2163
为了解NaOH处理对互花米草厌氧发酵的影响,在高温(55℃±1℃)和互花米草初始干物质含量为20%条件下,考察了NaOH处理对互花米草厌氧发酵产气特性、物质结构和组成以及发酵后互花米草水浸提液理化特性的影响.结果表明,互花米草经5%NaOH处理后,产气受到明显的抑制,累积产气量仅为CK的76.68%;碱处理配合水洗可有...  相似文献   

3.
互花米草厌氧消化产沼气的实验研究   总被引:7,自引:2,他引:5       下载免费PDF全文
为探索入侵物种互花米草厌氧生物处理的可行性,研究了互花米草中温批式厌氧发酵的产气特性和物质转化过程.结果表明,互花米草的产气率随VS负荷的增加呈现先增加后降低的趋势,当VS浓度为6.0%时,产气效果最好,产气量为294.84mL/g VS.发酵过程中,有机酸先增加后降低,pH值与有机酸呈极显著的负相关(R=-0.97508),该发酵过程为丁酸型发酵.互花米草中的维管束、薄壁细胞以及纹孔,有利于其进行厌氧生物处理, 发酵后的互花米草外观变得毛糙,出现了很多丝状物,维管束结构破坏严重,皮层和薄壁细胞不易被厌氧微生物破坏.FTIR和XRD结果显示,厌氧微生物不但利用互花米草中的易分解有机物,对纤维素的结晶区也有一定的破坏,发酵后的互花米草木质素相对含量增加.  相似文献   

4.
NaOH改性玉米秸秆对石油类污染物的吸附研究   总被引:2,自引:0,他引:2  
采用正交试验设计,对农业废弃物玉米秸秆进行NaOH化学改性,制得吸附剂,并分别考察其对原油、0#柴油、97#汽油的吸附性能。结果表明,在温度为80℃、NaOH质量分数为1%、固液比为1∶20、时间为12 h的条件下,玉米秸秆经NaOH改性后对3种油类的最大吸附量分别比改性前提高了22.62%、37.57%和38.50%。对改性前后秸秆主要组成成分和FTIR的分析发现,改性后秸秆中木质素和半纤维素的相对含量减少了,纤维素的相对含量增加了;主要存在于木质素和半纤维素中的羧基在改性后显著减少,代表纤维素的醇峰峰值却得到了提升,与改性前后组分变化一致。通过对比分析改性前后玉米秸秆的SEM图像表明,NaOH破坏了玉米秸秆的原始表面结构,使其变得疏松多孔,从而更加有利于秸秆对油的吸附。  相似文献   

5.
NaOH处理对互花米草深度气化利用的影响   总被引:2,自引:2,他引:0  
陈广银  郑正  常志州  叶小梅 《环境科学》2011,32(8):2485-2491
在实验室条件下,考察了NaOH固相处理用于互花米草中温干式发酵以及一次发酵后沼渣二次发酵的预处理方式的可行性,从产气特性、物质转化等角度进行了系统的分析.结果表明,NaOH处理对互花米草中温干式发酵产气未表现出促进作用,干物质(TS)产气量为358.94 mL/g,仅为CK的92.42%,但甲烷平均含量提高了1.84%...  相似文献   

6.
NaOH溶液间歇式处理对互花米草厌氧发酵特性的影响   总被引:4,自引:0,他引:4  
罗艳  陈广银  罗兴章  郑正 《环境科学学报》2010,30(10):2017-2021
在中温(35±1)℃条件下,用不同质量分数的NaOH溶液处理一次发酵后的互花米草,并进行批式中温厌氧二次发酵实验.分析了发酵过程中日产气量、累积产气量、甲烷含量、pH值、挥发性脂肪酸(VFA)的变化.结果表明,在总固体含量(TS)为6%的条件下,一次发酵产气率为317mL.g-1(以TS计),甲烷含量为71%,发酵过程中出现酸抑制现象.发酵后原料用4%、6%、8%的NaOH溶液处理后,在TS含量为6%的条件下进行二次发酵,仍均具有很好的产气特性,未出现酸化现象,产气率分别为262、276、282mL.g-1(以TS计),甲烷含量分别为72%、72%、69%.在一次发酵的基础上单位质量TS产气量分别增加了83%、87%、89%.这表明通过NaOH溶液的间歇式处理,能有效地提高互花米草厌氧消化的沼气产率.  相似文献   

7.
采用“一次发酵+ NaOH处理+二次发酵”工艺,以稻秸为原料,研究一次发酵时间对稻秸沼气发酵的影响.结果表明,一次发酵后的稻秸仍有一定的产气能力,干物质(TS)产气量为28.11~50.73mL/g TS,产气量大小与一次发酵时间成反比;一次发酵后的稻秸经NaOH处理后,稻秸物质结构受到明显破坏,有机物大量溶出,稻秸浸提液COD、总氮、铵态氮和硝态氮浓度分别较未经NaOH处理的稻秸提高128.56%~213.62%、93.92%~110.59%、53.90%~73.78%和112.08%~188.98%;NaOH处理并不能破坏稻秸的骨架结构,但稻秸官能团相对含量发生变化,加剧了纤维素、半纤维素和木质素结构的破坏.将一次发酵15,25和35d的稻秸经NaOH处理后用于沼气发酵,产气量较相应的对照分别提高了77.37%,119.41%和159.94%,一次发酵时间越长NaOH处理促进秸秆产气的效果越好.实验结束时,一次发酵15,25和35d的稻秸总产气量分别为202.78,205.15,210.21mL/g TS,三者间差异不显著,但较对照(CK)显著提高了11.89%、13.20%、15.99%,发酵周期较CK分别增加了-12,-2,8d.综上所述,采用“一次发酵+ NaOH处理+二次发酵”工艺时,一次发酵时间选择15d更合适.  相似文献   

8.
鸡粪与互花米草沼渣混合发酵产甲烷的研究   总被引:2,自引:1,他引:1  
在中温(35℃±1℃)条件下,采用批式发酵方式,进行了鸡粪与互花米草沼渣不同混合比例的厌氧发酵实验.实验设置鸡粪∶互花米草沼渣干物质(TS)比分别为5∶0(T1)、4∶1(T2)、3∶2(T3)、2∶3(T4)、1∶4(T5)和0∶5(T6)共6个处理.结果表明,经中温干发酵后的互花米草沼渣仍具有一定的厌氧产沼气能力,TS产气量为107.25 mL.g-1,甲烷含量为76.92%,厌氧微生物对互花米草沼渣纤维素的结晶区有一定的破坏作用,厌氧发酵后纤维素的相对结晶度指数CrI下降了5.55%;将鸡粪与互花米草沼渣混合发酵,明显提高了原料的厌氧产气性能,T2的产气效果最好,T1、T3~T6的累积产气量分别为T2的61.31%、62.09%、52.15%、39.74%和31.67%;鸡粪与互花米草沼渣混合发酵的产酸类型为混合型发酵,发酵过程中未出现酸化现象;混合发酵对破坏互花米草沼渣纤维素的结晶区有利,促进效果在1.13%~21.61%.  相似文献   

9.
碱处理对秸秆厌氧消化的影响   总被引:13,自引:5,他引:8  
陈广银  郑正  罗艳  邹星星  方彩霞 《环境科学》2010,31(9):2208-2213
为减少秸秆碱处理的碱用量,提高秸秆的产气量,从产气量、XRD和FTIR等角度对碱预处理与后处理进行了初步比较,并对碱处理前后秸秆浸提液的理化性质以及秸秆的物质结构变化进行了分析.结果表明,秸秆经5%NaOH处理48 h后,细胞中的有机物大量溶出,COD、TN、NO 3--N和NH 4+-N分别从2 311.11、175.40、5.02和117.82 mg/L增至10 488.89、417.84、248.64和141.44 mg/L,表明碱处理不仅破坏木质纤维结构,还破坏核酸、氨基酸等含氮物的结构,将其中的氮以NO 3--N和NH 4+-N的形式释放出来;碱处理破坏了秸秆木质素结构,木质素含量降低,但纤维素的相对结晶度增加,从0.592 3增加到0.662 2.厌氧消化的结果显示,秸秆预处理与后处理的产气能力相当,单位TS产气量分别为382.32 mL/g和375.84 mL/g,较对照分别提高了28.13%和25.96%,但后处理的碱用量仅为预处理的50%;厌氧发酵后对照中的木质素含量增加,而预处理和后处理均降低,后处理对木质素的破坏效果更好;厌氧微生物可破坏纤维素的结晶区,后处理对纤维素结晶区和无定形区的破坏均强于预处理.  相似文献   

10.
以互花米草为原料,采用中温(35±1)℃批式发酵的方式,考察了NaOH高温碱间歇式处理对互花米草厌氧消化过程的影响.结果表明,互花米草一次发酵至产气停止,单位TS产气量为263mL/g,发酵过程中出现酸化现象, pH值最低为5.17.二次发酵原料为一次发酵后的固体残余物,主要组分为可分解有机物以及一些难分解有机物,过程中未出现酸化现象, pH值经短暂下降后很快稳定在7.5左右,累积产气量在一次发酵的基础上提高了46%.互花米草单位TS产气量为383mL/g.消化液中有机酸乙酸含量最大,丙酸和丁酸含量相当.  相似文献   

11.
牛粪对互花米草混合厌氧消化过程的影响研究   总被引:4,自引:2,他引:2  
陈广银  郑正  邹星星  杨世关 《环境科学》2009,30(7):2130-2135
以互花米草和牛粪为原料,采用中温(35℃)批式发酵的方式,考察了添加牛粪对互花米草厌氧消化过程的影响.结果表明,互花米草单独发酵时,单位VS产气量为222.61 mL/g,发酵过程出现酸化现象,pH最低为5.60;添加牛粪改善了厌氧微生物的生存环境,提高了系统的缓冲能力,发酵过程未出现酸化现象,pH经短暂下降后很快恢复到7.2~7.5,累积产气量提高了38.83%,互花米草单位VS产气量为309.05 mL/g.混合发酵对消化液中有机酸产量影响不大,但有机酸高峰提前5d出现.FTIR表明,混合发酵促进了微生物对互花米草中易分解有机物的利用.发酵前、后和混合发酵互花米草的结晶度指数cri分别为0.617 6、 0.620 0和0.615 4.  相似文献   

12.
氢氧化钠固态预处理对稻草中木素结构特性的影响   总被引:4,自引:0,他引:4  
为探明这种NaOH固态预处理对稻草产气量影响的内在机理,采用傅立叶变换红外光谱(FTIR)、氢质子核磁共振波谱(1HNMR)、凝胶渗透色谱(GPC)等方法,对NaOH固态处理前后稻草中木素结构的变化进行了多方位研究.结果表明,NaOH固态预处理使稻草中木素内部结构、木素-碳水化合物复合体的形态结构发生了明显的变化,使得纤维素从木素的包裹中释放出来,木素成分也由难降解的三维网状大分子转变成了易降解的直链结构的小分子,从而使得厌氧微生物能够接触到更多的纤维素并对其进行更有效的消化.这些木素形态结构的变化是导致稻草厌氧消化产气量提高的内在原因.  相似文献   

13.
为提高水稻秸秆生物转化产糖效率,分别用氢氧化钠和碱性双氧水对其进行预处理,并考察处理液浓度、温度和时间对木质纤维素酶解糖化效果的影响. 通过分析预处理前后水稻秸秆组分和结构变化,揭示氢氧化钠预处理和碱性双氧水预处理对水稻秸秆酶解效果的影响机理. 结果表明:①在80 ℃的条件下,使用1.25%的氢氧化钠对水稻秸秆水浴处理3 h后效果较好,且酶解72 h后还原糖含量为480.81 mg/g. ②在50 ℃的条件下,使用碱性双氧水(1.5%的氢氧化钠+2%的双氧水)对水稻秸秆水浴处理5 h后效果较好,且酶解72 h后还原糖含量为575.85 mg/g. ③与未预处理的水稻糖化效果(132.7 mg/g)相比,经氢氧化钠预处理和碱性双氧水预处理后,水稻秸秆酶解产糖率分别提高了262.3%和336.2%. ④扫描电镜显示,经氢氧化钠和碱性双氧水预处理后,水稻秸秆的比表面积均显著增加,表面结构更加疏松. ⑤红外光谱和X射线衍射光谱表征显示,氢氧化钠预处理和碱性双氧水预处理均可消解水稻秸秆中的木质素并使其转化成纤维素,从而可以促进后续的酶解糖化效果. 研究显示,氢氧化钠预处理和碱性双氧水预处理都能较好地促进水稻秸秆的酶解糖化过程,得到较高的糖含量.   相似文献   

14.
植物是人工湿地发挥水处理功能的重要组成部分,为深入研究耐盐植物净化含盐水体机理及协同填料的作用,以美人蕉(Canna indica L.)、互花米草(Spartina alterniflora Loisel)、海三棱藨草(Scirpus mariqueter)为研究对象,协同复合填料,分别研究不同碳氮比、盐度条件和在不同装置中污染物去除效果的差异性,同时分析实验装置植物体内酶活性、植物根际与填料表面附着微生物的多样性和群落结构,旨在提高人工湿地系统运行效果。结果表明:1)人工湿地可有效处理滨海含盐水体,当HRT=4 d时,C/N=3∶1、盐度为1‰条件下,对TN、TP与COD去除效果达到最佳;2)3种耐盐植物均表现一定耐盐性,顺序为互花米草>海三棱藨草>美人蕉;3)加入新型矿渣材料的互花米草装置对TN、TP、COD去除率达到最佳,分别为95.56%、95.46%、63.61%,同时微生物多样性较丰富,加入新型矿渣材料的装置可有序优化微生物比例,促进互花米草与湿地功能性微生物协同净化水体,有利于发挥各菌种优势,以防优势菌种恶意繁殖;且该装置中互花米草体内POD、CAT、可溶性糖含量均高于其他装置植物,且丙二酮最低,表明植物遭受逆境伤害较低,抗干扰能力强。这为湿地植物处理沿海或含盐废水及构建高效人工湿地提供了科学依据与技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号