首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 125 毫秒

1.  Degradation of MTBE and TBA by a new isolate from MTBE-contaminated soil  
   ZHANG Rui-ling  HUANG Guo-qiang  LIAN Jing-yan  LI Xin-gang《环境科学学报(英文版)》,2007年第19卷第9期
   Methyl ten-butyl ether (MTBE), a gasoline additive, possesses serious problems to the environmental health. In the present study, a bacterial culture named A-3 which could effectively degrade MTBE was isolated from the MTBE contaminated soil. The isolate was identified as Chryseobacterium sp., a new species capable of degrading MTBE. In order to enhance its degradation ability, selected environment factors were investigated. The results showed that the optimal temperature was in the range of 25-30℃, the pH was 7.0, the inoculum size was 2 × 10^8 CFU/ml and the optimal concentration of MTBE was from 50 to 100 mg/L. The maximum MTBE utilization rate (Vmax) was 102 nmol MTBE/(mg cell protein.h). Furthermore, it was found that the isolate could also degrade tert-butyl alcohol (TBA). The degradation rates of TBA were much faster than those of MTBE. The additional TBA would lead to the decrease of the initial MTBE degradation rate and the inhibitory effect of TBA increased with the increase of TBA concentration. Similar protein profiles at least seven peptides were demonstrated after SDS-PAGE analysis of crude extracts obtained from the cells growing in MTBE and TBA culture.    

2.  Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE)  被引次数:1
   Fischer A  Oehm C  Selle M  Werner P《Environmental science and pollution research international》,2005年第12卷第6期
   Background Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 μg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Methods Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Results and Discussion Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Conclusion Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts. Recommendation and Outlook MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative. - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.    

3.  Polycyclic aromatic hydrocarbon biodegradation and extracellular enzyme secretion in agitated and stationary cultures of Phanerochaete chrysosporium  
   DING Juan  CONG Jun  ZHOU juan  GAO Shixiang《环境科学学报(英文版)》,2008年第20卷第1期
   The extracellular enzyme secretion and biodegradation of polycyclic aromatic hydrocarbons (PAHs) were studied in agitated and shallow stationary liquid cultures of Phanerochaete chrysosporium. Veratryl alcohol and Tween80 were added to cultures as lignin peroxidase (LIP) and manganese peroxidase (MnP) inducer, respectively. Shallow stationary cultures were suitable for the production of enzyme, whereas agitated cultures enhanced overall biodegradation by facilitating interphase mass transfer of PAHs into aqueous phases. The use of a LIP stimulator, veratryl alcohol, did not increase PAH degradation but significantly enhanced LiP activity. In contrast, Tween80 increased both MnP secretion and PAH degradation in shallow stationary cultures. On the other hand, high PAH degradation was observed in agitated cultures in the absence of detectable LIP and MnP activities. The results suggested that extracellular peroxidase activities are not directly related to the PAH degradation, and the increased solubility rather than enzyme activity may be more important in the promotion of PAH degradation.    

4.  Sensitivity of green and blue-green algae to methyl tert-butyl ether  被引次数:1
   CHEN Jianmeng  MA Jianyi  CAO Wei  WANG Pinwei  TONG Senmiao  SUN Yizhao《环境科学学报(英文版)》,2009年第21卷第4期
   The toxicity of methyl tert-butyl ether (MTBE) to Chlorella ellipsoidea and Aphanizomenon flos-aquae was tested and assessed for a 15-d incubation with concentrations of MTBE from high (2.00×104 mg/L) to low (2 mg/L). The results showed that the toxicity was low when the concentration of MTBE was in the range 1.00×104-2.00×104 mg/L (the greatest inhibition of growth-rate was 70%-71%, occurred during the day 1-5). Low concentrations (2-500 mg/L) stimulated algal growth up to the greatest effect of 85%-200% w...    

5.  Sensitivity of green and blue-green algae to methyl tert-butyl ether (MTBE) during a fifteen-day test  
   CHEN Jianmeng  MA Jianyi  CAO Wei  WANG Pinwei  TONG Senmiao  SUN Yizhao《环境科学学报(英文版)》,2009年第21卷第4期
   The test was designed to assess the toxicity of methyl tert-butyl ether (MTBE) to Chlorella ellipsoidea and Aphanizomenon flos-aquae during 15 d with concentrations of MTBE from high (2.00×104 mg/L) to low (2 mg/L). The results showed that the toxicity was low when the concentration of MTBE was 1.00×104-2.00×104 mg/L (the greatest inhibition of growth-rate was 70%-71%, occurring on day 1-5). Low concentrations (2-500 mg/L) stimulated algal growth up to the greatest effect of 85%-200% when the concentration of MTBE was 50-100 mg/L on day 3-5. The low concentrations may lead to an algal bloom owing to overabundance, which represents an aquatic ecological risk. However, the stimulatory effect occurred only during the day 1-5 and disappeared gradually during the day 13-15. The toxicity of MTBE (72-120 h EC50) is 6.65×103-9.58×103 mg/L for C. ellipsoidea and that is 1.14×104-2.00×104 mg/L for A. spiroides. We found that the toxicity and ecological risk of MTBE for the algal community structure were low. The toxicity was influenced by the duration of the test. We suggest that the duration of the test should not be shorter than half a life-cycle.    

6.  A reactor system combining reductive dechlorination with cometabolic oxidation for complete degradation of tetrachloroentylene  
   TAEHOLEE MICHIHIKOIKE MASANORIFUJITA《环境科学学报(英文版)》,2002年第14卷第4期
   A laboratory sequential anaerobic-aerobic bioreactor system, which consisted of an anaerobic fixed film reactor and two aerobic chemostats, was set up to degrade tetrachloroethylene (PCE) without accumulating highly toxic degradation intermediates. A soil enrichment culture, which could reductively dechlorinate 900/zM ( ca. 150 mg/L) of PCE stoichiometrically into cis-l, 2-dichloroethylene ( cis-DCE), was attached to ceramic media in the anaerobic fixed film reactor. A phenol degrading strain, Alcaligenes sp. 115, which can efficiently degrade cis-DCE by co-metabolic oxidation, was used as inocuhim for the aerobic chemostats consisted of a transformation reactor and a growth reactor.The anaerobic fixed film bioreactor showed more than 99 % of PCE transformation into cis-DCE in the range of influent PCE concentration from 5μM to 35μM at hydraulic retention time of 48h. On the other hand, efficient degradation of the resultant cis-DCE by strain R5 in the following aerobic system could not be achieved due to oxygen limitation. However, 54% of the maximum cis-DCE degradation was obtained when 10μmol of hydrogen peroxide (H2O2 ) was supplemented to the transformation reactor as an additional oxygen source. Further studies are needed to achieve more efficient co-metabolic degradation of cis-DCE in the aerobic reactor.    

7.  Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system  
   Dina Tan  Honghu Zeng  Jie Liu  Xiaozhang Yu  Yanpeng Liang  Lanjing Lu《环境科学学报(英文版)》,2013年第25卷第7期
   The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H2O2) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H2O2 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H2O2 dosage 10 mg/L, pH 6.85 and temperature (60±5)℃), the degradation rate of NB was 0.05214 min-1 when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H2O2 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H2O2 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.    

8.  Sonocatalytic degradation of methyl orange in the presence of (nanometer and ordinary) anatase TiO2 powders  
   WANG Jun  GUO Bao-dong  ZHANG Zhao-hong  ZHANG Xiang-dong  WU Jing  LI Hong《Journal of environmental sciences (China)》,2005年第17卷第3期
   The nanometer and ordinary anatase titanium dioxide(TiO2 ) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO2 powder were much better than that without TiO2, but the sonocatalytic activity of the nanometer anatase TiO2 particle was obviously higher than that of ordinary anatase TiO2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO2 powder was an advisable choice for non-or lowtransparent organic wastewaters.    

9.  Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China  
   Yanli Zhang  Chunlei Li  Xinming Wang  Hai Guo  Yanli Feng  Jianmin Chen《环境科学学报(英文版)》,2012年第24卷第1期
   Air samples were collected simultaneously at platform, mezzanine and outdoor in five typical stations of subway system in Shanghai, China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic preconcentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3 ± 2.1), (38.7 ± 9.0), (19.4 ± 10.1) and (30.0 ± 11.1) μg/m3, respectively; while trichloroethylene (TrCE), tetrachloroethylene (TeCE) and para-dichlorobenzene (pDCB), vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6 ± 1.3), (1.3 ± 0.5), (4.1 ± 1.1), (2.2 ± 1.1) and (1.2 ± 0.3) μg/m3, respectively. Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O) ratios of 1.1-9.5, whereas no significant indoor/outdoor differences were found except for benzene and TrCE. The highly significant mutual correlations (p < 0.01) for BTEX between indoor and outdoor and their significant correlation (p < 0.05) with methyl tert-butyl ether (MTBE), a marker of traffic-related emission without other indoor and outdoor sources, indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source. TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air, especially in the mezzanines.    

10.  Biodegradation of 2,6-ditert-butylphenol by immobilized microorganism strains  
   ZHANG Ya-lei  ZHANG Zhi-gang  XU De-qiang  QIANG Zhi-min  LI Guang-ming  ZHAO Jian-fu《Journal of environmental sciences (China)》,2006年第18卷第2期
   2,6-Ditert-butylphenol (2,6-DTBP) is a major organic contaminant presenting in acrylic fiber manufacturing wastewaters. This compound is of high bio-resistance due to its complex structure which consists of one phenol group and two highly branched tert-butyl groups. This research attempted to improve the biodegradation efficiency of 2,6-DTBP through various strain immobilization methods. The stratified immobilization can settle oxygen transmission in the single microorganism immobilization, and can realize two-process reaction in the single device by choosing two symbiotic microorganisms. Two effective strains, named F-1-4 and F-3-4, which were screened out in our previous work, were used to degrade 2,6-DTBP after being immobilized in calcium alginate gel. Results indicate that the substrate removal efficiency of various immobilization methods follows the order: stratified 〉 single F-3-4 〉 mixed ≈single F-1-4. The immobilized biodegradation capacity was higher than the free one. After an incubation time of 12 d, 91% of 2,6-DTBP could be degraded by the stratified immobilization method, compared to 79% achieved by the mixed immobilization method with an initial 2,6-DTBP concentration of 100 mg/L. The stratified immobilization satisfies the oxygen demand nature of the aerobic F-3-4 and the facultative F-1-4, thus yielding the highest degradation efficiency. Both the outer layer strain F-3-4 and the inner layer strain F-1-4 can grow actively on the substrate of 2,6-DTBP, as illustrated by SEM images. This study shows that the highly bio-refractory compound, 2,6-DTBP, can be effectively degraded using appropriately inunobilized microorganism strains.    

11.  The addition of microbes for treating textile wastewater  被引次数:3
   Yang Huifang  Wang Kaimin  Jia Shengfen  Qu Angui  Xian Haijun《Journal of environmental sciences (China)》,1991年第3卷第1期
   Some strains and culture of bacteria which are able to decolorize dyes and degrade polyvinyl alcohol(PVA) were isolated and selected. A pilot scale facultative anaerobic-aerobic biological process was applied for treatment of textile wastewater containing dyes and PVA. Activated carbon adsorption was used as a tertiary treatment stage, and residual sludge from clarifier returned to the anaerobic reactor again. The pilot test were carried out with two systems. One was inoculated by acclimated sludge, and the another was adding the mixed culture of dye-decoloring and PVA-degrading bacteria for forming biological films, the latter was observed to be more effective than the former. The test has run normally for ten months with a COD loading of 2.13 kg/m3/day, a BOD5 loading of 0.34 kg/m3/day in anaerobic reactor; a COD loading of 1.71 kg/m3/day, a BOD5 loading 0.44 kg/m3/day in aerobic reactor. The pollutants removal efficiency by adding microbes was about 20% higher than that by acclimated sludge. The aver    

12.  Determination of methyl tert-butyl ether(MTBE) in Chinese fuels by gas chromatography/mass spectrometry and gas chromatography/flame ionization detector  
   LIU Jie-min  CHENG Wei  WEN Mei-juan  JIANG Gui-bin《Journal of environmental sciences (China)》,2004年第16卷第4期
   A method was developed to determine the concentration of methyl tert-butyl ether(MTBE) in gasoline,diesel and heating oil by gas chromatography(GC) with mass spectrometry(GC-MS) or flame ionization detection(FID). The diluted gasoline was directly injected into the GC, and the complete separation of MTBE from co-eluting hydrocarbons was not required. GC/MS or GC/FID method can be used to analyze MTBE in different concentration range and have good consistency.    

13.  A reactor system combining reductive dechloirnation with cometabolic oxidation for complete degradation of tetrachloroentylene  
   TAE HO LEE  MICHIHIKO IKE  MASANORI FUJITA《Journal of environmental sciences (China)》,2002年第14卷第4期
   A laboratory sequential anaerobic aerobic bioreactor system, which consisted of an anaerobic fixed film reactor and two aerobic chemostats, was set up to degrade tetrachloroethylene (PCE) without accumulating highly toxic degradation intermediates. A soil enrichment culture, which could reductively dechlorinate 900μM (ca. 150 mg/L) of PCE stoichiometrically into cis-1,2-dichloroethylene ( cis-DCE), was attached to ceramic media in the anaerobic fixed film reactor. A phenol degrading strain, Alcaligenes sp. R5, which can efficiently degrade cis-DCE by co metabolic oxidation, was used as inoculum for the aerobic chemostats consisted of a transformation reactor and a growth reactor. The anaerobic fixed film bioreactor showed more than 99 % of PCE transformation into cis DCE in the range of influent PCE concentration from 5μM to 35μM at hydraulic retention time of 48h. On the other hand, efficient degradation of the resultant cis-DCE by strain R5 in the following aerobic system could not be achieved due to oxygen limitation. However, 54% of the maximum cis-DCE degradation was obtained when 10 μmol of hydrogen peroxide (H2O2) was supplemented to the transformation reactor as an additional oxygen source. Further studies are needed to achieve more efficient co metabolic degradation of cis DCE in the aerobic reactor.    

14.  Simultaneous anaerobic-aerobic biodegradation of halogenated phenolic compound under oxygen-limited conditions  被引次数:1
   CHEN Yuan-cai  LAN Hui-xi  ZHAN Huai-yu  FU shi-yu《环境科学学报(英文版)》,2005年第17卷第5期
   The successful application of co-immobilized aerobic-anaerobic biomass under limited aeration in wastewater treatment systems would eliminate the problems associated with the intermediates mono-chlorophenol(MCP) and di-chlorophenol(DCP) accumulations. With low initial pentachlorophenol(PCP) concentration, all PCP could be completely removed under oxygen-limited strict anaerobic conditions, and the removal efficiencies with different initial headspace oxygen percentage(IHOP) were not obviously different from each other. While at high initial PCP concentration, under strictly anaerobic conditions PCP and their intermediates were clearly higher than that under other conditions, and produced obvious accumulation, the highest PCP reduction was achieved by the system receiving 30 IHOP, oxygen-limited system also exhibited lower residual TOC concentration and lower concentration of metabolic intermediates MCP and DCP. These results suggested that under strictly anaerobic condition the reductive dechlorination of low chlorinated compounds became rate limiting in the reductive dechlorination pathway, less chlorinated compounds be more amenable to aerobic degradation, and the aerobes of outer layers could function under limited oxygen. The co-immobilized aerobic-anaerobic biomass for methanogenesis under limited-aeration for chlorophenol degradation might be an attractive and efficient alternative for the sequential anaerobic/aerobic system to achieve mineralization of a broad range of recalcitrance highly chlorinated organics and low final TOC concentrations.    

15.  Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor  被引次数:1
   Hao Yu  Chuan Chen  Jincai M  Xijun Xu  Ronggui Fan  Aijie Wang《环境科学学报(英文版)》,2014年第26卷第5期
   Limited oxygen supply to anaerobic wastewater treatment systems had been demonstrated as an effective strategy to improve elemental sulfur(S0) recovery, coupling sulfate reduction and sulfide oxidation. However, little is known about the impact of dissolved oxygen(DO) on the microbial functional structures in these systems. We used a high throughput tool(GeoChip) to evaluate the microbial community structures in a biological desulfurization reactor under micro-aerobic conditions(DO: 0.02–0.33 mg/L). The results indicated that the microbial community functional compositions and structures were dramatically altered with elevated DO levels. The abundances of dsrA/B genes involved in sulfate reduction processes significantly decreased(p 0.05, LSD test) at relatively high DO concentration(DO: 0.33 mg/L). The abundances of sox and fccA/B genes involved in sulfur/sulfide oxidation processes significantly increased(p 0.05, LSD test) in low DO concentration conditions(DO: 0.09 mg/L) and then gradually decreased with continuously elevated DO levels. Their abundances coincided with the change of sulfate removal efficiencies and elemental sulfur(S0) conversion efficiencies in the bioreactor. In addition, the abundance of carbon degradation genes increased with the raising of DO levels, showing that the heterotrophic microorganisms(e.g., fermentative microorganisms) were thriving under micro-aerobic condition. This study provides new insights into the impacts of micro-aerobic conditions on the microbial functional structure of sulfatereducing sulfur-producing bioreactors, and revealed the potential linkage between functional microbial communities and reactor performance.    

16.  β-Proteobacteria菌降解甲基叔丁基醚的条件及中间代谢产物研究  被引次数:1
   钟卫鸿  路争  陈建孟  陈效  孙柯丹《环境科学》,2006年第27卷第12期
   采用可利用甲基叔丁基醚(methyl tert-butyl ether,MTBE)为唯一碳源和能源生长的1株β-Proteobacteria菌进行MTBE在密闭系统中的降解试验,确定了该菌降解MTBE的最适条件为:培养液初始pH值7.2,初始细胞浓度107 cells/mL,初始MTBE浓度为25mg/L.考察了密封培养系统内培养液溶解氧对降解效果的影响,结果表明,在培养系统密闭前充入氧气可提高菌体对MTBE的降解速率.以气相色谱-质谱联用法检测到MTBE降解主要中间代谢产物是叔丁基醇、异丙醇、丙酮.在选择离子扫描模式下定量分析,得到降解过程中主要中间代谢产物的浓度变化曲线,据此推断MTBE的降解途径属于"丙酮途径".    

17.  Mesopolymer modified with palladium phthalocyaninesulfonate as a versatile photocatalyst for phenol and bisphenol A degradation under visible light irradiation  
   Rong Xing  Lin Wu  Zhenghao Fei  Peng Wu《环境科学学报(英文版)》,2013年第25卷第8期
   A novel versatile photocatalyst, FDU-PdPcS, was prepared by immobilizing palladium phthalocyaninesulfonate (PdPcS) onto the FDU-15 mesopolymer via multi-step chemical modification processes involving chloromethylation of the FDU-15 mesopolymer first with chloromethyl methyl ether, a subsequent amination reaction with ethylenediamine, and finally modification with palladium phthalocyaninesulfonate via ionic interaction. The obtained FDU-PdPcS photocatalyst was characterized by the X-ray diffraction (XRD), UV-Vis spectrosopy and inductively coupled plasma (ICP) techniques. This photocatalyst not only affords a high dispersion of monomeric PdPcS molecules, which may further be stabilized by the π-electron of benzene rings of FDU-15, but also provides a number of diamino groups inside the mesopores, which could be advantageous for the photodegradation of phenolic pollutants. In photodegradation studies of phenolic pollutants, the FDU-PdPcS catalyst exhibited excellent visible light photocatalytic activity and reusability. The photodegradation products of phenol and bisphenol A were investigated by the gas chromatoghraphy-mass spectrometry (GC-MS) technique. The results showed that the photodegradation products were composed of carboxylic acids and CO2. Isopropanol, sodium azide and benzoquinone were used as hydroxyl radical (OH.), singlet oxygen (1O2) and superoxide radical (O2.-) scavengers, respectively. The results suggested that 1O2 and O2. were the prominent active species during the photodegradation process. A possible mechanism for the photodegradation of phenol was also discussed.    

18.  Effects of exogenous short-chain N-acyl homoserine lactone on denitrifying process of Paracoccus denitrificans  
   Yun Cheng  Yang Zhang  Qiuxuan Shen  Jie Gao  Guoqiang Zhuang  Xuliang Zhuang《环境科学学报(英文版)》,2017年第54卷第4期
   N-acyl-homoserine lactones (AHLs) serve as quorum-sensing signals, which control a number of bacterial processes in many proteobacteria. Here we report the effects of exogenous short-chain AHL on the denitrifying process of Paracoccus denitrificans, which are capable of aerobic and anaerobic growth by utilizing nitrate. The denitrification activity of these cells was monitored by measuring denitrification products (including nitrate, nitrite, and nitrous oxide), and the individual messenger ribonucleic acid (mRNA) levels of nitrate, nitrite, nitric oxide and nitrous oxide reductases. The results indicated that 2 μmol/L C6-homoserine lactone (HSL) has little effect on cell density under either anaerobic or aerobic culture conditions, and the nitrate reduction activity appeared slightly affected by N-hexanoyl-DL-homoserine lactone (C6-HSL). However, exogenous C6-HSL significantly affected the transcription of nitrite reductase and nitric oxide reductase genes in P. denitrificans regardless of the presence of oxygen, and N2O accumulation activity in P. denitrificans was suppressed by C6-HSL under aerobic condition. In contrast, exogenous C6-HSL stimulated the production of N2O under anaerobic condition, suggesting that the regulation of denitrification by quorum sensing may be important in N2O release.    

19.  Differential fate of metabolism of a disperse dye by microorganisms Galactomyces geotrichum and Brevibacillus laterosporus and their consortium GG-BL  
   Tatoba R. Waghmode  Mayur B. Kurade  Anuradha N. Kagalkar  Sanjay P. Govindwar《环境科学学报(英文版)》,2012年第24卷第7期
   The present work aims to evaluate Brown 3 REL degrading potential of developed microbial consortium GG-BL using two microbial cultures, Galactomyces geotrichum MTCC 1360 (GG) and Brevibacillus laterosporus MTCC 2298 (BL). Microbial consortium GG-BL showed 100% decolorization of a dye Brown 3 REL, while individually G. geotrichum MTCC 1360 and B. laterosporus MTCC 2298 showed 26% and 86% decolorization under aerobic condition (shaking) respectively. Measurements of biochemical oxygen demand (BOD) (76%) and chemical oxygen demand (COD) (68%) were done after decolorization by consortium GG-BL. No induction in activities of oxidoreductive enzymes found in G. geotrichum while B. laterosporus showed induction of veratryl alcohol oxidase, Nicotineamide adenine dinucleotide-dichlorophenol indophenol (NADH-DCIP) reductase and riboflavin reductase indicating their role in dye metabolism. Consortium GG-BL showed induction in the activities of laccase, veratryl alcohol oxidase, tyrosinase, NADH-DCIP reductase and riboflavin reductase. Two different sets of induced enzymes from G. geotrichum and B. laterosporus work together in consortium GG-BL resulting in faster degradation of dye. The degradation of Brown 3 REL was analyzed using high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR) and gas chromatography mass spectroscopy (GC-MS). Phytotoxicity study revealed that metabolites formed after degradation was significantly less toxic in nature.    

20.  Biodegradation of 2-methylquinoline by Enterobacter aerogenes TJ-D isolated from activated sludge  
   Lin Wang  Yongmei Li  Jingyuan Duan《环境科学学报(英文版)》,2013年第25卷第7期
   Bacterial strain Enterobacter aerogenes TJ-D capable of utilizing 2-methylquinoline as the sole carbon and energy source was isolated from acclimated activated sludge under denitrifying conditions. The ability to degrade 2-methylquinoline by E. aerogenes TJ-D was investigated under denitrifying conditions. Under optimal conditions of temperature (35℃) and initial pH 7, 2-methylquinoline of 100 mg/L was degraded within 176 hr. The degradation of 2-methylquinoline by E. aerogenes TJ-D could be well described by the Haldane model (R2 > 0.91). During the degradation period of 2-methylquinoline (initial concentration 100 mg/L), nitrate was almost completely consumed (the removal efficiency was 98.5%), while nitrite remained at low concentration (< 0.62 mg/L) during the whole denitrification period. 1,2,3,4-Tetrahydro-2-methylquinoline, 4-ethyl-benzenamine, N-butyl-benzenamine, N-ethyl-benzenamine and 2,6-diethyl-benzenamine were metabolites produced during the degradation. The degradation pathway of 2-methylquinoline by E. aerogenes TJ-D was proposed. 2-Methylquinoline is initially hydroxylated at C-4 to form 2-methyl-4-hydroxy-quinoline, and then forms 2-methyl-4-quinolinol as a result of tautomerism. Hydrogenation of the heterocyclic ring at positions 2 and 3 produces 2,3-dihydro-2-methyl-4-quinolinol. The carbon-carbon bond at position 2 and 3 in the heterocyclic ring may cleave and form 2-ethyl-N-ethyl-benzenamine. Tautomerism may result in the formation of 2,6-diethyl-benzenamine and N-butyl-benzenamine. 4-Ethyl-benzenamine and N-ethyl-benzenamine were produced as a result of losing one ethyl group from the above molecules.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号