首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 390 毫秒
1.
不同氮水平下秸秆和活性碳对土壤不同粒级碳的影响   总被引:1,自引:1,他引:0  
利用采集自FACE(Free Air Carbon Dioxide Enrichment)技术平台上田间培养的土壤样品,通过温室培养的方法,研究不同CO2浓度下导致作物生物量增加和更多碳输入对土壤含碳量的影响. 结果表明, CO2浓度高(即通过秸秆还田和根系进入土壤的含碳量增加)时,其显著影响碳在不同粒级土壤中的转化,粒径>53 μm土壤的含碳量增加,粒径<53 μm土壤的含碳量降低;在没有秸秆加入的常规氮水平下与有秸秆加入的低氮水平下,含碳量变化幅度较大;单位土壤各粒级的含碳量均有增加,有秸秆加入,活性碳(葡萄糖)量越大,含碳量增加幅度越大;没有秸秆加入,活性碳量越大,总碳含量增加幅度越小. 而不同氮水平下秸秆的分解代谢对土壤不同粒级碳的影响还不明确,有待继续研究.   相似文献   

2.
为研究大气CO2浓度逐渐增加和稳定高浓度处理对水稻秸秆在后茬冬小麦田土壤中分解特性的影响,进行田间试验,设置3个浓度水平——背景大气CO2浓度(CK)、每个生长季CO2浓度比CK逐渐增加40 μmol/mol(T1)、每个生长季CO2浓度均比CK高200 μmol/mol(T2),处于上述3个浓度水平下连续3个生长季的水稻秸秆处理编号分别用CK-OTC、T1-OTC、T2-OTC表示,第3个生长季T1-OTC的CO2浓度为120 μmol/mol,3个生长季中前两个生长季处于开顶箱(OTC)外且第3个生长季处于OTC内的处理分别表示为CK、T1、T2.将不同处理下的水稻秸秆埋入麦田土壤中,于填埋后30、60、84、119、149 d测定剩余秸秆的质量以及总碳(TC)、总氮(TN)含量.结果表明:填埋后30 d不同处理下秸秆的分解率为33.2%~38.2%,至149 d填埋结束,不同处理下秸秆的分解率为57.3%~60.3%.填埋试验后期(填埋后84、119、149 d)的秸秆分解率与粗纤维含量之间存在显著(P < 0.05)或极显著(P < 0.01)相关关系.T1、T2处理下水稻秸秆在分解过程中的TC含量与CK无显著(P>0.05)差异,而OTC-T1处理下水稻秸秆在整个分解阶段的TC含量显著(P < 0.05)高于CK,且在填埋后60~119 d这一阶段T2处理下TC含量与OTC-CK处理之间存在边缘显著(0.05 < P < 0.10)差异.所有处理下的TC含量在填埋后比填埋前均明显降低,特别是对于TN含量而言,大部分处理下TN含量均随时间的线性增加程度达到极显著(P < 0.01)水平,C/N均在分解过程中随时间呈线性降低趋势(P < 0.05).研究显示,一个生长季尺度上CO2浓度的升高会提高秸秆分解率,秸秆分解过程中TC分解速率比TN快,从而造成C/N下降.   相似文献   

3.
为探究土壤CO2浓度变化特征及其对岩溶碳循环的影响,于2018年6—12月对重庆市南川区后沟泉水化学及泉域上覆土壤CO2(监测点土地利用类型为玉米-油菜轮作地)进行为期7个月的连续监测和采样,并结合1—5月的监测数据,定量分析旱雨季土壤CO2浓度与岩溶碳汇量的季节性演变特征及二者的相互关联性. 结果表明:①土壤CO2浓度具有显著的季节性变化特征,主要表现为雨季较高、旱季较低,其最高值和最低值分别出现在9月(13 316 μmol/mol)和1月(2 262.63 μmol/mol). ②温度与土壤CO2浓度之间存在较强的正相关关系(R2=0.82,0.0012浓度之间不具相关性(R2=0.17,P>0.5),说明土壤CO2浓度主要受温度的影响. ③泉水Ca2++Mg2+、HCO3?浓度在雨季明显高于旱季,而水体CO2净消耗量在旱雨季无较大差异,这可能是由于受土壤CO2效应、降水稀释效应和H2SO4/HNO3释放CO2的共同影响. 研究显示,土壤CO2浓度的变化特征表现为季节性差异,但在土壤CO2浓度及外部环境的多重影响下,岩溶碳循环的季节性变化并不明显.   相似文献   

4.
采集内蒙古河套灌区盐碱土壤(电导率EC为0.27mS/cm),利用NaCl调节土壤电导率为(0,10,20,40,80mS/cm),基于稳定碳同位素分析不同电导率土壤添加定量δ13C-CO2后,土壤CO2吸收量以及土壤难溶性无机碳含量(SIC)-δ13C值.结果表明,盐碱土壤能够吸收CO2,随土壤电导率(EC)升高,土壤CO2累积吸收量增加, S5(EC=80mS/cm) CO2累积吸收量比S1(0.27mS/cm)高1.6640mg.土壤SIC含量(R2=0.7080,P<0.05)和土壤可溶性无机碳含量(DIC)(R2=0.6096,P<0.05)与土壤EC显著负相关关系.盐碱土壤吸收CO2部分固存于土壤无机碳中,外源添加δ13C-CO2,盐碱土壤SIC-δ13C值(-5.299‰ ~ -0.8341‰)显著增加.EC为20mS/cm土壤固相保存δ13C-CO2总量最高1.276mg,固存δ13C-CO2总量占土壤吸收13CO2总量比例30.28%最高;EC为80mS/cm固碳量最低为0.2749mg,固存δ13C-CO2总量占土壤吸收13CO2总量比例5.579%.  相似文献   

5.
为探究干湿交替条件下,农田土壤CO2排放对生物炭添加的响应特征及其影响因素,通过室外土柱模拟试验,在灰漠土中添加不同粒径棉花秸秆生物炭(<0.25 mm, M1; 0.25~1 mm, M2; 1~5 mm, M3;>5 mm, M4)和葡萄藤生物炭(<0.25 mm, P1; 0.25~1 mm, P2; 1~5 mm,P3;>5 mm, P4),研究干湿交替下生物炭的类型、粒径对土壤CO2排放特征的影响.结果表明,添加生物炭改变了土壤CO2排放速率,土壤CO2累积排放量随棉花秸秆生物炭粒径的增加而降低,不同生物炭类型对土壤CO2排放速率的影响存在极显著差异(p <0.001).在湿润阶段,棉花秸秆生物炭处理土壤CO2累积排放量为20.67~28.26 g·m-2·d-1,与其相比,同一粒径下葡萄藤生物炭处理土壤CO2累积排放量显著降低,降低了13.18%~28.83%;在干旱阶段,与对照处理相比,葡萄藤生物炭处理下土壤CO...  相似文献   

6.
选择南通协兴港附近裸露潮滩,使用便携式土壤通量测量系统开展潮间带湿地CO2通量监测,研究无植被覆盖条件下潮间带碳通量特征及其影响因素的关系.实验结果表明,各潮滩CO2固定水平表现为高潮带 < 中潮带 < 低潮带.低潮带叶绿素a含量较高,对CO2的吸收能力较强,而高潮带有机碳含量高,微生物呼吸作用释放的CO2通量较高,研究区整体上表现为对CO2净吸收.此外,CO2净固定通量随土壤有机碳含量和落潮时间增加而下降,与土壤叶绿素a含量和地下水位关系密切.研究成果对于明确人类活动对江苏沿海潮间带裸露光滩碳循环的影响具有重要意义.  相似文献   

7.
随着全球气候变化的不断加剧,大气CO2浓度呈明显增加趋势,这将间接影响土壤-植物-微生物系统的氮循环过程.为研究典型水稻土壤反硝化细菌对CO2浓度升高的响应规律和机制,借助水稻密闭培养箱,运用实时荧光定量聚合酶链式反应(Real-Time qPCR)分子技术,设置不施氮(0 mg/kg)和常规施氮(100 mg/kg)2个处理,研究CO2倍增对水稻不同生长期土壤关键反硝化功能细菌(narG、nirK和nirS型)丰度的影响.结果表明:①在2种施氮水平,CO2倍增显著促进了水稻分蘖期、孕穗期、扬花期和成熟期水稻根系生长(增幅为2.96%~28.4%)、地上部生物量增加(增幅为7.1%~107.3%)以及成熟期籽粒干质量的增加(增幅为19.5%和38.0%),具有显著的增产效应.②反硝化细菌丰度对CO2倍增的响应与生育期及施氮水平有关,CO2倍增在2个施氮水平均抑制分蘖期反硝化细菌的繁殖,显著增加孕穗期反硝化细菌数量;在水稻扬花期,CO2倍增促进了施氮处理narG和nirS型反硝化细菌数量的增加,在成熟期抑制未施氮处理下narG、nirK和nirS型反硝化细菌的生长.另外,narG、nirK、nirS型反硝化细菌丰度整体表现为narG > nirS > nirK,且随水稻的生长,其在成熟期的丰度均呈降低趋势.nirK和nirS基因同属亚硝酸还原酶,但nirS基因丰度高于nirK,且对CO2倍增和施氮的响应有所差异.研究显示,CO2倍增可显著增加水稻生长和产量,不同施氮水平对稻田土壤反硝化细菌丰度的影响存在差异.   相似文献   

8.
郝旺林  夏彬  许明祥 《中国环境科学》2021,41(12):5875-5884
以黄土丘陵区不同有机碳水平的完整侵蚀坡面为对象,解析了CO2通量的空间分异格局驱动因子及过程机制,并构建了CO2通量的分段测算模型.结果表明:(1)侵蚀导致坡面土壤CO2通量的空间分异格局,具体表现为沉积区(S)>对照区(CK)>侵蚀区(E);有机碳水平的提高可以整体促进各部位CO2通量的增加.(2)侵蚀可导致土壤水分、容重和团聚体稳定性降低,引起土壤养分流失,降低细菌、真菌多样性;沉积则引起相反的现象.侵蚀/沉积过程对土壤温度的影响并不显著.有机碳水平的增加可以有效改善土壤颗粒、土壤水分,增加容重,抑制土壤养分的流失、增加细菌,降低真菌多样性.(3)结构方程模型解析了侵蚀部位、土壤温度、土壤水分、有机碳(SOC)、水溶性碳(DOC)、微生物碳(SMBC)、真菌多样性、细菌多样性对于CO2通量的多因素耦合驱动机制(R2=77%),明确了土壤温度、土壤水分、微生物碳为CO2通量的直接影响因子.在水热双因子模型的基础上,嵌入能够间接表征微生物活性和有效碳底物的C因子,分段(按照坡面侵蚀部位)建立T&M&C模型,可以较为准确地测算侵蚀坡面不同部位CO2通量(R2>67%).  相似文献   

9.
大气氮沉降对三峡库区消落带土壤呼吸的影响   总被引:1,自引:0,他引:1  
以三峡库区消落带落干期土壤为研究对象,采用室内模拟培养的方法,探讨了大气氮沉降通量及其组成对土壤呼吸的影响.结果表明,土壤呼吸速率对氮添加的响应为短期效应.1倍当前大气氮沉降添加下,无机氮和有机氮对土壤累积CO2释放分别表现为无影响和抑制作用.除NH4+-N在2倍氮沉降添加下表现为抑制作用外,2、3倍氮沉降添加均促进了土壤累积CO2释放.与硝态氮相比,2、3倍氮沉降添加的铵态氮对土壤累积CO2释放具有抑制作用.  相似文献   

10.
保护性耕作对土壤结构体碳氮分布的影响   总被引:4,自引:0,他引:4  
以7年不同耕作的定位试验为研究对象,研究了深松、旋耕、免耕等保护性耕作对关中塿土小麦-玉米轮作条件下土壤结构体分布以及结构体中有机碳和全氮含量、储量的影响。结果表明,与传统耕作相比,深松、旋耕、免耕以及秸秆还田+传统耕作均提高了5 mm粒级结构体的含量。随着土壤结构体粒径的增大,结构体有机碳含量逐渐减小,有机碳含量在0.25 mm结构体中平均含量为10.87 g/kg,在5 mm结构体中平均含量为9.57 g/kg。在0.25 mm的各粒级结构体中,全氮含量也随着结构体粒径的增加而减小。深松和旋耕处理较免耕和传统耕作更有利于结构体中有机碳、氮含量的增加;深松和旋耕比较,深松更有利于2 mm结构体碳氮含量的增加。相关分析表明,土壤碳氮含量和较小粒级(2 mm)结构体的碳氮含量之间的相关性最好。从有利于结构体保持和有机碳、氮储量增加的角度考虑,深松和旋耕是当地较理想的耕作方式。  相似文献   

11.
强还原与生物炭对土壤酶活性和温室气体排放的影响   总被引:1,自引:0,他引:1  
本研究设置未修复对照(CK)、土壤强还原处理(RSD)、生物炭修复(BC)以及RSD与生物炭联合修复(RSD+BC),采用培养实验对比研究不同修复处理对设施蔬菜地土壤酶活性和温室气体(CO2和N2O)排放的影响.结果表明:相比CK,RSD和RSD+BC处理显著提高了β-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、过氧化物酶(PEO)、β-N-乙酰氨基葡萄糖苷酶(NAG)和酸性磷酸酶(AP)的活性以及酶C:P与酶N:P值(P<0.05),而BC处理对上述5种胞外酶活性的影响并不显著.同CK相比,RSD、BC和RSD+BC处理的CO2排放量分别提高了10.6、1.1和12.2倍;RSD处理的N2O排放量亦显著增加,但BC和RSD+BC处理的则显著降低(P<0.05).与RSD相比,RSD+BC处理的N2O排放量和综合温室效应(GWP)显著减少了86.9%和37.8%.结构方程模型分析表明:βG与土壤可溶性有机碳(DOC)对CO2累积排放量具有直接正效应,且βG与CBH通过影响DOC含量间接影响CO2排放;NO3--N和NH4+-N对N2O累积排放量具有直接显著负效应.综合考虑土壤酶活性和温室气体减排,RSD+BC联合修复效果更佳.  相似文献   

12.
浅层淹水条件下不同施肥处理对黑土温室气体排放的影响   总被引:1,自引:0,他引:1  
以东北黑土区长期耕作土壤为对象,通过室内培养试验研究了浅层淹水条件下不同施肥处理对黑土温室气体排放的影响.结果表明,浅层淹水条件下,与不施肥对照处理相比,单施氮肥处理对土壤CO2排放没有显著影响,氮肥配施猪粪或者秸秆则显著促进了CO2的排放,使得CO2排放速率提高了一个数量级,氮肥配施秸秆处理的CO2排放量最高.浅层淹水条件下,与不施肥对照处理相比,施用氮肥显著促进了土壤N2O的排放.而与单施氮肥处理相比,氮肥配施猪粪和秸秆则显著抑制了N2O的排放,表现为土壤对N2O的微量吸收,氮肥配施秸秆处理的N2O吸收量相对较高.浅层淹水条件下施用氮肥抑制了土壤CH4的排放,而与单施氮肥处理相比,氮肥配施猪粪或者秸秆则促进了土壤CH4的排放.  相似文献   

13.
采用高通量测序技术,研究秸秆、生物炭和纳米碳3种碳源添加对盐碱耕地土壤固碳细菌群落结构及多样性的影响,并分析土壤化学性质与固碳细菌群落多样性的关系.结果表明:3种碳源添加均降低土壤固碳细菌群落多样性,其中生物炭和纳米碳添加的土壤固碳细菌的Chao1指数、物种多样性、Shannon指数及系统多样性值均高于秸秆添加的.3种碳源添加均降低土壤固碳细菌群落的物种丰度,其中纳米碳添加的物种丰度大于秸秆和生物炭添加的.在群落组成方面及相对丰度上,3种碳源添加后的优势菌门为变形菌门(Proteobacteria),优势菌纲为γ-变形菌纲(Gammaproteobacteria),均在纳米碳添加后相对丰度最高,分别为90.38%、57.79%.群落组间差异分析结果显示,秸秆和纳米碳添加后土壤固碳细菌群落结构差异显著.冗余分析结果表明,土壤固碳细菌群落结构受土壤pH值、有机碳、全氮、全磷、碱解氮及有效磷的综合影响,其中土壤pH值和有效磷含量是影响土壤固碳细菌群落结构的主要化学性质.综合来看,在盐碱耕地中添加秸秆、生物炭或纳米碳,都抑制了土壤固碳细菌群落的多样性和物种丰度,但纳米碳能够增加土壤固碳细菌群落结构差异.  相似文献   

14.
采用高通量测序技术,研究秸秆、生物炭和纳米碳3种碳源添加对盐碱耕地土壤固碳细菌群落结构及多样性的影响,并分析土壤化学性质与固碳细菌群落多样性的关系.结果表明:3种碳源添加均降低土壤固碳细菌群落多样性,其中生物炭和纳米碳添加的土壤固碳细菌的Chao1指数、物种多样性、Shannon指数及系统多样性值均高于秸秆添加的.3种碳源添加均降低土壤固碳细菌群落的物种丰度,其中纳米碳添加的物种丰度大于秸秆和生物炭添加的.在群落组成方面及相对丰度上,3种碳源添加后的优势菌门为变形菌门(Proteobacteria),优势菌纲为γ-变形菌纲(Gammaproteobacteria),均在纳米碳添加后相对丰度最高,分别为90.38%、57.79%.群落组间差异分析结果显示,秸秆和纳米碳添加后土壤固碳细菌群落结构差异显著.冗余分析结果表明,土壤固碳细菌群落结构受土壤pH值、有机碳、全氮、全磷、碱解氮及有效磷的综合影响,其中土壤pH值和有效磷含量是影响土壤固碳细菌群落结构的主要化学性质.综合来看,在盐碱耕地中添加秸秆、生物炭或纳米碳,都抑制了土壤固碳细菌群落的多样性和物种丰度,但纳米碳能够增加土壤固碳细菌群落结构差异.  相似文献   

15.
为了揭示干旱半干旱区高寒湿地不同水分梯度对土壤呼吸规律的影响,以及土壤温度与含水量对土壤呼吸影响的差异性,以新疆巴音布鲁克天鹅湖高寒湿地为研究对象,在2014年植物生长季利用LI-8100土壤碳通量自动测量系统对不同水分条件(常年积水区、季节性积水区、常年干燥区)下的土壤呼吸速率进行测定,分析土壤呼吸日变化、季节性变化特征及其与土壤温度、土壤体积含水量的关系. 结果表明:①不同水分条件下巴音布鲁克天鹅湖高寒湿地土壤呼吸速率日变化均呈明显的单峰曲线,常年积水区、季节性积水区、常年干燥区土壤呼吸速率最大值分别为1.97、7.39、8.83 μmol/(m2·s),均出现在13:00—15:00;土壤CO2日累积排放量季节性变化明显,差异性达到极显著水平(P<0.01),三者的最大值分别为0.12、0.45、0.40 mol/m2,地表积水显著抑制了土壤呼吸,提高了土壤碳稳定性. ②不同水分条件下土壤呼吸速率与土壤温度、土壤体积含水量之间均呈极显著正相关(P<0.01),常年积水区、季节性积水区和常年干燥区的Q10(土壤呼吸温度敏感性)差异性极显著(P<0.01),其大小表现为常年干燥区(1.54)<常年积水区(2.22)<季节性积水区(3.36),各水分区域6月典型日的Q10最大,表现为常年干燥区(2.56)<季节性积水区(4.30)<常年积水区(4.75),说明水分条件显著影响Q10. ③巴音布鲁克天鹅湖高寒湿地土壤呼吸受地下5 cm处土壤温度(T)与0~5 cm土壤体积含水量(W)的综合影响,季节性积水区土壤呼吸速率与二者之间满足最佳拟合模型Rs=-1.113+0.041W-0.366T+0.008WT,常年干燥区则满足最佳拟合模型Rs=1.470+0.023W-0.027T+0.002WT.   相似文献   

16.
秸秆还田对江西农田土壤固碳影响的模拟分析   总被引:3,自引:0,他引:3  
秸秆还田等农田管理措施能有效地增加土壤碳储量,从而有利于减缓大气CO2浓度的上升趋势。论文基于环境政策综合气候模型(EPIC),采用千烟洲生态试验站和鹰潭生态试验站农田监测场长期观测数据,验证和优化了EPIC模型参数,同时利用1990-2010年江西省气象资料以及土壤清查资料,模拟分析了4种秸秆还田(CR)比例情景下2010-2030年江西省水稻田土壤的固碳潜力。研究结果表明,无秸秆还田 (CR0%)和秸秆还田25%(CR25%)两种处理下耕作层土壤有机碳储量分别下降21.3%和6.5%,秸秆还田50%(CR50%)和100%(CR100%)处理下土壤有机碳储量分别增加5.4%和11.9%;相对CR0%情景而言,CR25%、CR50%、CR100% 情景下江西省水稻田土壤总固碳潜力分别为6.43、14.92和25.26 TgC(1 Tg = 106 t)。研究结果表明,通过合理的调控措施,采用保护性耕作(秸秆还田)是提高水稻田土壤固碳能力的一种有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号