首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We investigated the thermal inactivation profiles of murine norovirus (MNV), Hepatitis A virus (HAV), and feline calicivirus (FCV), which are surrogates for the study of human noroviruses. Thermal inactivation of MNV and FCV were evaluated at 37, 50, and 60°C and HAV at 37, 50, 60, and 70°C. All viral surrogates were relatively stable at 37°C. MNV and FCV decimal reduction times (D-values) at 50°C were statistically significantly different (P < 0.05) with MNV being more stable. Both surrogates had comparable, low D-values at 60°C. HAV had significantly higher (P < 0.05) D-values than both MNV and FCV at 50 and 60°C. Overall, the infectivity assay results indicate that HAV is resistant to thermal inactivation while MNV is moderately resistant and FCV is least resistant.  相似文献   

2.
Photodynamic inactivation (PDI) is extensively used to inactivate different type of pathogens through the use of photosensitizers (PS). Curcumin has been identified as an excellent natural photosensitizer with some potential applications in the food industry. The aim of this study was to assess the antiviral activity of photoactivated curcumin on norovirus surrogates, feline calicivirus (FCV), and murine norovirus (MNV). Initially, different concentrations of curcumin (13.5–1358 µM) were individually mixed with each virus at titers of ca. 6–7 log TCID50/ml and photoactivated by LED blue light with light dose of 3?J/cm2. Results showed that photoactivated curcumin at 50 µg/mL reduced FCV titers by almost 5 log after incubation at 37 °C for 30 min. Lower antiviral activity (0.73 log TCID50/mL reduction) was reported for MNV. At room temperature, curcumin at 5 µg/mL reduced FCV titers by 1.75 log TCID50/mL. These results represent a step forward in improving food safety using photoactivated curcumin as an alternative natural additive to reduce viral contamination.  相似文献   

3.
Human noroviruses (HuNoV) are amongst the leading causes of acute non-bacterial gastroenteritis in humans and can be transmitted via person-to-person contact, via contact with contaminated surfaces or by consumption of contaminated food. Contaminated surfaces in healthcare settings contribute to the transmission of viruses. No-touch automated room disinfection systems might prevent such a spread of contamination and thus their virucidal effect needs to be evaluated. The aim of this study was to assess the efficacy of a nebulization system spraying hydrogen peroxide on two main surrogates of HuNoV, namely murine norovirus (MNV) and feline calicivirus (FCV). The viruses were dried on cover glasses and on stainless steel discs and exposed to nebulization. The number of infectious viral particles and genomic copies before and after the nebulization was compared. The efficacy in reducing infectivity of both surrogates was demonstrated. For the infectious viral titre of MNV and FCV, a log10 reduction factor ≥4.84 and 4.85 was observed after nebulization, respectively, for tests on cover glasses and ≥3.90 and 5.30, respectively, for tests on stainless steel discs. Only low reductions in genomic copy numbers were observed for both surrogates. The nebulization of hydrogen peroxide showed a clear virucidal effect on both HuNoV surrogates, MNV and FCV, on two different carriers and the use of nebulization should be promoted in complementarity with conventional disinfection methods in healthcare settings and food processing facilities to reduce viral load and spread of contamination.  相似文献   

4.
The inability to propagate human norovirus (NoV) or to clearly differentiate infectious from noninfectious virus particles has led to the use of surrogate viruses, like feline calicivirus (FCV) and murine norovirus-1 (MNV), which are propagatable in cell culture. The use of surrogates is predicated on the assumption that they generally mimic the viruses they represent; however, studies are proving this concept invalid. In direct comparisons between FCV and MNV, their susceptibility to temperatures, environmental and food processing conditions, and disinfectants are dramatically different. Differences have also been noted between the inactivation of NoV and its surrogates, thus questioning the validity of surrogates. Considerable research funding is provided globally each year to conduct surrogate studies on NoVs; however, there is little demonstrated benefit derived from these studies in regard to the development of virus inactivation techniques or food processing strategies. Human challenge studies are needed to determine which processing techniques are effective in reducing NoVs in foods. A major obstacle to clinical trials on NoVs is the perception that such trials are too costly and risky, but in reality, there is far more cost and risk in allowing millions of unsuspecting consumers to contract NoV illness each year, when practical interventions are only a few volunteer studies away. A number of clinical trials have been conducted, providing important insights into NoV inactivation. A shift in research priorities from surrogate research to volunteer studies is essential if we are to identify realistic, practical, and scientifically valid processing approaches to improve food safety.  相似文献   

5.
Root uptake of enteric pathogens and subsequent internalization has been a produce safety concern and is being investigated as a potential route of pre-harvest contamination. The objective of this study was to determine the ability of hepatitis A virus (HAV) and the human norovirus surrogate, murine norovirus (MNV), to internalize in spinach and green onions through root uptake in both soil and hydroponic systems. HAV or MNV was inoculated into soil matrices or into two hydroponic systems, floating and nutrient film technique systems. Viruses present within spinach and green onions were detected by RT-qPCR or infectivity assays after inactivating externally present viruses with Virkon®. HAV and MNV were not detected in green onion plants grown up to 20 days and HAV was detected in only 1 of 64 spinach plants grown in contaminated soil substrate systems up to 20 days. Compared to soil systems, a drastic difference in virus internalization was observed in hydroponic systems; HAV or pressure-treated HAV and MNV were internalized up to 4 log RT-qPCR units and internalized MNV was shown to remain infectious. Understanding the interactions of human enteric viruses on produce can aid in the elucidation of the mechanisms of attachment and internalization, and aid in understanding risks associated with contamination events.  相似文献   

6.
Cinnamaldehyde (CNMA), an organic compound that gives cinnamon its flavor and odor, was investigated for its virucidal activity on norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), and hepatitis A virus (HAV). Initially, different concentrations of CNMA (0.1, 0.5 and 1 %) were individually mixed with each virus at titers of ca. 6–7 log10 TCID50/ml and incubated 2 h at 4 and 37 °C. CNMA was effective in reducing the titers of norovirus surrogates in a dose-dependent manner after 2 h at 37 °C, while HAV titers were reduced by 1 log10 after treatment with 1 % of CNMA. When incubation time was extended, HAV titers were reduced by 3.4 and 2.7 log10 after overnight incubation at 37 °C with 1 and 0.5 % of CNMA, respectively. Moreover, this paper analyzed, for the first time, the antiviral activity of adding an active electrospun interlayer based on zein and CNMA to a polyhydroxybutyrate packaging material (PHB) in a multilayer form. Biodegradable multilayer systems prepared with 2.60 mg/cm2 (~9.7 %) of CNMA completely inactivated FCV according to ISO 22196:2011, while MNV titers were reduced by 2.75 log10. When the developed multilayer films were evaluated after one month of preparation or at 25 °C, the antiviral activity was reduced as compared to freshly prepared multilayer films evaluated at 37 °C. The results show the excellent potential of this system for food contact applications as well as for active packaging technologies in order to maintain or extend food quality and safety.  相似文献   

7.
Foodborne viruses, particularly human norovirus (NV) and hepatitis virus type A, are a cause of concern for public health making it necessary to explore novel and effective techniques for prevention of foodborne viral contamination, especially in minimally processed and ready-to-eat foods. This study aimed to determine the antiviral activity of a probiotic lactic acid bacterium (LAB) against feline calicivirus (FCV), a surrogate of human NV. Bacterial growth medium filtrate (BGMF) of Lactococcus lactis subsp. lactis LM0230 and its bacterial cell suspension (BCS) were evaluated separately for their antiviral activity against FCV grown in Crandell–Reese feline kidney (CRFK) cells. No significant antiviral effect was seen when CRFK cells were pre-treated with either BGMF (raw or pH 7-adjusted BGMF) or BCS. However, pre-treatment of FCV with BGMF and BCS resulted in a reduction in virus titers of 1.3 log10 tissue culture infectious dose (TCID)50 and 1.8 log10 TCID50, respectively. The highest reductions in FCV infectivity were obtained when CRFK cells were co-treated with FCV and pH 7-adjusted BGMF or with FCV and BCS (7.5 log10 TCID50 and 6.0 log10 TCID50, respectively). These preliminary results are encouraging and indicate the need for continued studies on the role of probiotics and LAB on inactivation of viruses in various types of foods.  相似文献   

8.
High pressure processing (HPP) is an increasingly popular non-thermal food processing technology. Study of HPP’s potential to inactivate foodborne viruses has defined general pressure levels required to inactivate hepatitis A virus, norovirus surrogates, and human norovirus itself within foods such as shellfish and produce. The sensitivity of a number of different picornaviruses to HPP is variable. Experiments suggest that HPP inactivates viruses via denaturation of capsid proteins which render the virus incapable of binding to its receptor on the surface of its host cell. Beyond the primary consideration of treatment pressure level, the effects of extending treatment times, temperature of initial pressure application, and matrix composition have been identified as critical parameters for designing HPP inactivation strategies. Research described here can serve as a preliminary guide to whether a current commercial process could be effective against HuNoV or HAV.  相似文献   

9.
One key assumption impacting data quality in viral inactivation studies is that reduction estimates are not altered by the virus seeding process. However, seeding viruses often involves the inadvertent addition of co-constituents such as cell culture components or additives used during preparation steps which can impact viral reduction estimates by inducing non-representative oxidant demand in disinfection studies and fouling in membrane assessments. The objective of this study was therefore to characterize a mammalian norovirus surrogate, murine norovirus (MNV), and bacteriophage MS2 at sequential stages of viral purification and to quantify their potential contribution to artificial oxidant demand and non-representative membrane fouling. Our results demonstrate that seeding solvent extracted and 0.1 micron filtered MNV to ~105 PFU/mL in an experimental water matrix will result in additional total organic carbon (TOC) and 30 min chlorine demand of 39.2 mg/L and 53.5 mg/L as Cl2, respectively. Performing sucrose cushion purification on the MNV stock prior to seeding reduces the impacts of TOC and chlorine demand to 1.6 and 0.15 mg/L as Cl2, respectively. The findings for MNV are likely relevant for other mammalian viruses propagated in serum-based media. Thus, advanced purification of mammalian virus stocks by sucrose cushion purification (or equivalent density-based separation approach) is warranted prior to seeding in water treatment assessments. Studies employing bacteriophage MS2 as a surrogate virus may not need virus purification, since seeding MS2 at a concentration of ~106 PFU/mL will introduce only ~1 mg/L of TOC and ~1 mg/L as Cl2 of chlorine demand to experimental water matrices.  相似文献   

10.
Hepatitis E virus has been recognised as a food-borne virus hazard in pork products, due to its zoonotic properties. This risk can be reduced by adequate treatment of the food to inactivate food-borne viruses. We used a spectrum of viruses and bacteriophages to evaluate the effect of three food treatments: high pressure processing (HPP), lactic acid (LA) and intense light pulse (ILP) treatments. On swine liver at 400 MPa for 10 min, HPP gave log10 reductions of ≥4.2, ≥5.0 and 3.4 for feline calicivirus (FCV) 2280, FCV wildtype (wt) and murine norovirus 1 (MNV 1), respectively. Escherichia coli coliphage ?X174 displayed a lower reduction of 1.1, while Escherichia coli coliphage MS2 was unaffected. For ham at 600 MPa, the corresponding reductions were 4.1, 4.4, 2.9, 1.7 and 1.3 log10. LA treatment at 2.2 M gave log10 reductions in the viral spectrum of 0.29–2.1 for swine liver and 0.87–3.1 for ham, with ?X174 and MNV 1, respectively, as the most stable microorganisms. The ILP treatment gave log10 reductions of 1.6–2.8 for swine liver, 0.97–2.2 for ham and 1.3–2.3 for sausage, at 15–60 J cm?2, with MS2 as the most stable microorganism. The HPP treatment gave significantly (p < 0.05) greater virus reduction on swine liver than ham for the viruses at equivalent pressure/time combinations. For ILP treatment, reductions on swine liver were significantly (p < 0.05) greater than on ham for all microorganisms. The results presented here could be used in assessments of different strategies to protect consumers against virus contamination and in advice to food producers. Conservative model indicators for the pathogenic viruses could be suggested.  相似文献   

11.
Human noroviruses and hepatitis A virus (HAV) are commonly associated with outbreaks occurring in restaurant establishments and catered events. Food handlers are major contributing factors to foodborne illnesses initiated in the kitchen setting. In this study, transfer of HAV and murine norovirus (MNV-1), a human norovirus surrogate, between produce (cucumbers, strawberries, tomatoes, cantaloupes, carrots, and honeydew melons) and common kitchen utensils (graters and knives) was investigated. The extent of virus transfer to produce during utensil application, in the presence and the absence of food residue, and the impact of knife surface properties (sharp, dull, serrated) was also investigated. Transfer of MNV-1 and HAV from produce items, initially contaminated with ~5.5 log PFU, to knives and graters during application ranged from 0.9 to 5.1 log PFU. MNV-1 transfer to knives was the greatest for cucumbers, strawberries, and tomatoes, and the least for honeydew melons, while transfer of HAV to knives was greater for tomatoes and honeydew melons than strawberries, cantaloupes, and cucumbers. After preparation of a contaminated produce item, knife cross-contamination easily occurred as viruses were detected on almost all of the seven produce items successively prepared. Produce residues on utensils often resulted in less virus transfer when compared to utensils without residue accumulation. Knife surface properties did not impact virus transfer. The ease of virus transfer between produce and utensils demonstrated by the current study highlights the importance of efforts aimed toward preventing cross-contamination in the kitchen environment.  相似文献   

12.
Shellfish are an important cause of foodborne viral illness. Consumer-friendly cooking recommendations for shellfish could improve food safety and decrease the risk for infection from contaminated products. Thermal inactivation parameters were established for hepatitis A virus (HAV) in mussels and validated with cooking experiments. Steaming for only 2–5 min was not sufficient to inactivate HAV in mussels in all layers of a steamer. Steaming mussels for 6 min was sufficient to inactivate HAV in all layers. These cooking guidelines produce shellfish with a reduced risk for foodborne virus transmission.  相似文献   

13.
14.
Blueberry and blueberry extracts are known for their health benefits and antimicrobial properties. Natural therapeutic or preventive options to decrease the incidences of foodborne viral illnesses are becoming popular and being researched. This study aimed to determine the antiviral effects of blueberry juice (BJ) and blueberry proanthocyanidins (BB-PAC, B-type PAC structurally different from A-type PAC found in cranberries) against the infectivity of hepatitis A virus (HAV) and human norovirus surrogates (feline calicivirus (FCV-F9) and murine norovirus (MNV-1)) at 37 °C over 24 h using standard plaque assays. Viruses at ~5 log PFU/ml were mixed with equal volumes of BJ (pH 2.8), neutralized BJ (pH 7.0), BB-PAC (1, 2, 4, and 10 mg/ml), malic acid (pH 3.0), or phosphate-buffered saline (pH 7.2) and incubated over 24 h at 37 °C. Each experiment was carried out in duplicate and replicated thrice. FCV-F9 titers were found to be reduced to undetectable levels with 1 and 2 mg/ml BB-PAC after 5 min, with 0.5 mg/ml BB-PAC after 1-h, and with BJ after 3-h. MNV-1 titers were reduced to undetectable levels after 3 h with 1, 2, and 5 mg/ml BB-PAC and after 6 h with BJ. HAV titers were reduced to undetectable levels after 30 min with 2 and 5 mg/ml BB-PAC, after 3 h with 1 mg/ml BB-PAC, and by ~2 log PFU/ml with BJ after 24-h. BB-PAC shows preventive potential against infection by the tested enteric viruses in a dose- and time-dependent manner, although further in vitro studies in model food systems and in vivo studies using animal models are warranted.  相似文献   

15.
Food and Environmental Virology - The leading causes of foodborne viral disease outbreaks are human norovirus and hepatitis A virus (HAV). Their environmental persistence enables contamination of...  相似文献   

16.
Until now, little is known about the influence of food additives on heat inactivation of noroviruses. Only a few studies have shown a protective or inhibiting effect on virus infectivity caused by the food matrix. Therefore, the aim of this study was to examine the influence of sodium chloride, sucrose and milk on heat stability of the surrogates murine norovirus (MNV) and MS2 phage at 60 °C for 1–5 min in PBS for MNV and for 5–120 min in suspension medium buffer for MS2 phage. Different concentrations of sodium chloride (5, 10 %) and sucrose (5, 50 %) were added to the respective buffers. In addition, commercially available milk with different fat concentrations (0.3, 1.5, 3.5 %) was investigated in this study. In general, a linear titre reduction for MNV and MS2 phage could be observed, except for the heat treatment of MNV in PBS with 50 % sucrose. A protective effect of PBS with 50 % sucrose and of the matrix milk on MNV could be concluded. All other tested conditions did not show any influence on virus inactivation. However, MS2 phage did show a higher heat resistance throughout the experiments compared to MNV. In future investigations, it should be tested, whether the achieved data may be considered in risk assessments of heat-treated food products with high concentrations of sugar. Furthermore, it should be clarified, whether these results can also be referred to complex food matrices.  相似文献   

17.
Human noroviruses (HuNoVs) cause foodborne and waterborne viral gastroenteritis worldwide. Because HuNoV culture systems have not been developed thus far, no available medicines or vaccines preventing infection with HuNoVs exist. Some herbal extracts were considered as phytomedicines because of their bioactive components. In this study, the inhibitory effects of 29 edible herbal extracts against the norovirus surrogates murine norovirus (MNV) and feline calicivirus (FCV) were examined. FCV was significantly inhibited to 86.89 ± 2.01 and 48.71 ± 7.38% by 100 μg/mL of Camellia sinensis and Ficus carica, respectively. Similarly, ribavirin at a concentration of 100 μM significantly reduced the titer of FCV by 77.69 ± 10.40%. Pleuropterus multiflorus (20 μg/mL) showed antiviral activity of 53.33 ± 5.77, and 50.00 ± 16.67% inhibition was observed after treatment with 20 μg/mL of Alnus japonica. MNV was inhibited with ribavirin by 59.22 ± 16.28% at a concentration of 100 μM. Interestingly, MNV was significantly inhibited with 150 µg/mL Inonotus obliquus and 50 μg/mL Crataegus pinnatifida by 91.67 ± 5.05 and 57.66 ± 3.36%, respectively. Treatment with 20 µg/mL Coriandrum sativum slightly reduced MNV by 45.24 ± 4.12%. The seven herbal extracts of C. sinensis, F. carica, P. multiflorus, A. japonica, I. obliquus, C. pinnatifida, and C. sativum may have the potential to control noroviruses without cytotoxicity.  相似文献   

18.
The antiviral potential of selected bacteria species [lactic acid bacteria (LAB) and micrococcaceae] was examined. By this, the effect of their cell-free supernatants as well as of certain species-related metabolites (sakacin A, nisin, and lactic acid) was investigated on different viruses after exposure at 24 °C for 3 days. Viruses were incubated with supernatants and metabolites in a dilution ratio of 1:10. Data for antiviral effects towards murine norovirus S99 (MNV), influenza A virus A/WSN/33 (H1N1), Newcastle disease virus Montana (NDV) and feline herpesvirus KS 285 (FHV) were generated in vitro simulating pH and temperature conditions according to raw sausage fermentations. Investigations showed no antiviral effect of sakacin A and nisin on MNV, H1N1, FHV and NDV. Furthermore, the antiviral potential of d,l-lactic acid was determined for MNV and H1N1. At raw sausage-related pH values (5.0–6.2) it could be shown that the virus titre for MNV and H1N1 was reduced by a maximum of 3.25 log and 2.5 log units, respectively. In addition, 29 culture supernatants of different bacteria species, mainly LAB and staphylococci, were tested for their antiviral activity against MNV. Only the cell-free supernatant of a Lb. curvatus strain showed a higher virus titre reduction of MNV by 1.25 log units compared to the control. Further studies on the characterisation of this cell-free supernatant were carried out, however, the antiviral substance could not be identified so far.  相似文献   

19.
20.
Various methods to detect foodborne viruses including norovirus (NoV) in contaminated food have been developed. However, a practical method suitable for routine examination that can be applied for the detection of NoVs in oily, fatty, or emulsive food has not been established. In this study, we developed a new extraction and concentration method for detecting NoVs in contaminated composite meals. We spiked NoV-GI.4 or -GII.4 stool suspension into potato salad and stir-fried noodles. The food samples were suspended in homogenizing buffer and centrifuged to obtain a food emulsion. Then, anti-NoV-GI.4 or anti-NoV-GII.4 rabbit serum raised against recombinant virus-like particles or commercially available human gamma globulin and Staphylococcus aureus fixed with formalin as a source of protein A were added to the food emulsion. NoV-IgG-protein A-containing bacterial complexes were collected by centrifugation, and viral RNA was extracted. The detection limits of NoV RNA were 10–35 copies/g food for spiked NoVs in potato salad and stir-fried noodles. Human gamma globulin could also concentrate other NoV genotypes as well as other foodborne viruses, including sapovirus, hepatitis A virus, and adenovirus. This newly developed method can be used as to identify NoV contamination in composite foods and is also possibly applicable to other foodborne viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号