首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for Japan's agriculture. In this context, changes in soil C stocks in northern Japan's arable farming area over the period of 1971-2010, specifically in the region's typical Andosol (volcanic ash-derived) and non-Andosol soils, were simulated using soil-type-specific versions of the Rothamsted carbon model (RothC). The models were then used to predict the effects, over the period of 2011-2050, of three potential management scenarios: (i) baseline: maintenance of present crop residue returns and green manure crops, as well as composted cattle manure C inputs (24-34 Mg ha−1 yr−1 applied on 3-55% of arable land according to crop), (ii) cattle manure: all arable fields receive 20 Mg ha−1 yr−1 of composted cattle manure, increased C inputs from crop residues and present C inputs from green manure are assumed, and (iii) minimum input: all above-ground crop residues removed, no green manure crop, no cattle manure applied. Above- and below-ground residue biomass C inputs contributed by 8 major crops, and oats employed as a green manure crop, were drawn from yield statistics recorded at the township level and crop-specific allometric relationships (e.g. ratio of above-ground residue biomass to harvested biomass on a dry weight basis). Estimated crop net primary production (NPP) ranged from 1.60 Mg C ha−1 yr−1 for adzuki bean to 8.75 Mg C ha−1 yr−1 for silage corn. For the whole region (143 × 103 ha), overall NPP was estimated at 952 ± 60 Gg C yr−1 (6.66 ± 0.42 Mg C ha−1 yr−1). Plant C inputs to the soil also varied widely amongst the crops, ranging from 0.50 Mg C ha−1 yr−1 for potato to 3.26 Mg C ha−1 yr−1 for winter wheat. Annual plant C inputs to the soil were estimated at 360 ± 45 Gg C yr−1 (2.52 ± 0.32 Mg C ha−1 yr−1), representing 38% of the cropland NPP. The RothC simulations suggest that the region's soil C stock (0-30 cm horizon), across all soils, has decreased from 13.96 Tg C (107.5 Mg C ha−1 yr−1) in 1970 to 12.46 Tg C (96.0 Mg C ha−1 yr−1) in 2010. For the baseline, cattle manure and minimum input scenarios, soil C stocks of 12.13, 13.27 and 9.82 Tg C, respectively, were projected for 2050. Over the period of 2011-2050, compared to the baseline scenario, soil C was sequestered (+0.219 Mg C ha−1 yr−1) by enhanced cattle manure application, but was lost (−0.445 Mg C ha−1 yr−1) under the minimum input scenario. The effect of variations of input data (monthly mean temperature, monthly precipitation, plant C inputs and cattle manure C inputs) on the uncertainty of model outputs for each scenario was assessed using a Monte Carlo approach. Taking into account the uncertainty (standard deviation as % of the mean) for the model's outputs for 2050 (5.1-6.1%), it is clear that the minimum input scenario would lead to a rapid decrease in soil C stocks for arable farmlands in northern Japan.  相似文献   

2.
Grazed grasslands occupy 26% of the earth's ice free land surface and are therefore an important component of the global C balance. In New Zealand, pastoral agriculture is the dominant land use and recent research has shown that soils under intensive dairy pastures have lost large amounts of carbon (∼1000 kg C ha−1 y−1) during the past few decades. The objective of this research was to determine the net ecosystem carbon balance (NECB) of an intensively grazed dairy pasture in New Zealand. Net ecosystem CO2 exchange (NEE) was measured using an eddy covariance (EC) system from 1 January 2008 to 31 December 2009. Other C imports (feed) and exports (milk, methane, leaching, and harvested biomass) were calculated from farm production data and literature values. During 2008 there was a one in 100 year drought during summer/autumn, which was followed by a very wet winter. There were no prolonged periods of above or below average rainfall or soil moisture in 2009, but temperatures were consistently lower than 2008. The severe summer/autumn drought during 2008 caused a loss of CO2 to the atmosphere, but annual NEE remained negative (a CO2 sink, −1610 ± 500 kg C ha−1), because CO2 lost during the drought was regained during the winter and spring. The site was also a net CO2 sink during 2009 despite the colder than usual conditions (−2290 ± 500 kg C ha−1). Including C imports and exports in addition to CO2 exchange revealed that the site was a C sink in both years, with a NECB of 590 ± 560 kg C ha−1 in 2008, and 900 ± 560 kg C ha−1 in 2009. The C sequestration found in this study is in agreement with most other Northern Hemisphere EC studies of grazed pastures on mineral soils, but is not consistent with the large C losses reported for soils under dairy pastures throughout New Zealand. In the current study (like many other EC studies) the influence of climatic conditions and management practices on the annual C balance was only semi-quantitatively assessed. An extended period of EC measurements combined with modelling is required to more accurately quantify the effect of different climatic conditions on the annual C balance, and the influence of different management practices needs to be quantified using specifically designed studies (such as paired EC towers), so that practices which minimise C losses and maximise C sequestration can be identified.  相似文献   

3.
We predicted changes in yields and direct net soil greenhouse gas (GHG) fluxes from converting conventional to alternative management practices across one of the world's most productive agricultural regions, the Central Valley of California, using the DAYCENT model. Alternative practices included conservation tillage, winter cover cropping, manure application, a 25% reduction in N fertilizer input and combinations of these. Alternative practices were evaluated for all unique combinations of crop rotation, climate, and soil types for the period 1997-2006. The crops included were alfalfa, corn, cotton, melon, safflower, sunflower, tomato, and wheat. Our predictions indicate that, adopting alternative management practices would decrease yields up to 5%. Changes in modeled SOC and net soil GHG fluxes corresponded to values reported in the literature. Average potential reductions of net soil GHG fluxes with alternative practices ranged from −0.7 to −3.3 Mg CO2-eq ha−1 yr−1 in the Sacramento Valley and −0.5 to −2.5 Mg CO2-eq ha−1 yr−1 for the San Joaquin Valley. While adopting a single alternative practice led to modest net soil GHG flux reductions (on average −1 Mg CO2-eq ha−1 yr−1), combining two or more of these practices led to greater decreases in net soil GHG fluxes of up to −3 Mg CO2-eq ha−1 yr−1. At the regional scale, the combination of winter cover cropping with manure application was particularly efficient in reducing GHG emissions. However, GHG mitigation potentials were mostly non-permanent because 60-80% of the decreases in net soil GHG fluxes were attributed to increases in SOC, except for the reduced fertilizer input practice, where reductions were mainly attributed to decreased N2O emissions. In conclusion, there are long-term GHG mitigation potentials within agriculture, but spatial and temporal aggregation will be necessary to reduce uncertainties around GHG emission reductions and the delivery risk of the associated C credits.  相似文献   

4.
In New Zealand, phosphate (P) fertilisers used in agriculture are the main sources of the potentially toxic elements cadmium (Cd) and uranium (U), which occur as unwanted contaminants. New Zealand is developing draft soil guideline values (SGV) for maximum concentrations of Cd. To assess when soils under pasture for sheep production might reach a particular SGV, we analysed archived soil samples from a 23 yr P fertiliser trial. The pasture sites were at Whatawhata, North Island, New Zealand, and had received P fertiliser at the rates of 0, 30, 50 and 100 kg P ha−1 yr−1. From 1983 to 1989, P was applied as single superphosphate, from 1989 to 2006, P was applied as triple superphosphate. Soils from replicate paddocks were sampled annually to a depth of 75 mm on easy (10-20°) and steep (30-40°) slope classes. Total P, Cd and U were analysed by ICP-MS after acid digestion. Data were analysed by fitting trend lines using linear mixed models for two slope classes and for two sampling periods 1983-1989 and 1989-2006 when the soil sampling method and fertiliser type had been changed.The changes in total P, Cd and U were directly related to the type and amount of P fertiliser applied, the control treatment showed no significant change in P, Cd or U. At 50 and 100 kg P ha−1 yr−1 there were generally linear increases in total P and total U, and the same trend line applied to both time periods, but the rate of increase in P was greater on the easy slope class. For Cd, a “broken stick” model was needed to explain the data. Pre-1989, Cd increased in the 50 and 100 kg P ha−1 yr−1 treatment (0.036-0.045 mg kg−1 yr−1, respectively): post 1988 the rate of increase declined markedly on those two treatments (0.005-0.015 mg kg−1 yr−1, respectively), and declined absolutely in the 30 kg P ha−1 yr−1 treatments. The maximum content of Cd was in the 100 kg P ha−1 yr−1 treatment which reached 0.931 mg Cd kg−1 on the easy slope. For U there were steady linear increases for the 30, 50 and 100 kg P ha−1 treatments, and no significant difference between the steep and easy slopes, nor the two sampling periods, the maximum concentration obtained was 2.80 mg U kg−1 on the 100 kg P ha−1 treatment. The results suggest that at rates of P fertiliser likely to be applied to hill farms (<50 kg P ha−1 yr−1), and using P fertiliser with low Cd content, then the Cd concentration in this soil will never reach a SGV of 1 mg kg−1.  相似文献   

5.
Knowing underlying practices for current greenhouse gas (GHG) emissions is a necessary precursor for developing best management practices aimed at reducing N2O emissions. The effect of no-till management on nitrous oxide (N2O), a potent greenhouse gas, remains largely unclear, especially in perennial agroecosystems. The objective of this study was to compare direct N2O emissions associated with management events in a cover-cropped Mediterranean vineyard under conventional tillage (CT) versus no-till (NT) practices. This study took place in a wine grape vineyard over one full growing season, with a focus on the seven to ten days following vineyard floor management and precipitation events. Cumulative N2O emissions in the NT system were greater under both the vine and the tractor row compared to CT, with 0.15 ± 0.026 kg N2O-N ha−1 growing season−1 emitted from the CT vine compared to 0.22 ± 0.032 kg N2O-N ha−1 growing season−1 emitted from the NT vine and 0.13 ± 0.048 kg N2O-N ha−1growing season−1 emitted from the CT row compared to 0.19 ± 0.019 kg N2O-N ha−1 growing season−1 from the NT row. Yet these variations were not significant, indicating no differences in seasonal N2O emissions following conversion from CT to NT compared to long-term CT management. Individual management events such as fertilization and cover cropping, however, had a major impact on seasonal emissions, indicating that management events play a critical role in N2O emission patterns.  相似文献   

6.
The paper describes a model designed for analysing interrelated nitrogen (N) fluxes in farming systems. It combines the partial N balance, farm gate balance, barn balance and soil surface balance, in order to analyse all relevant N fluxes between the subsystems soil–plant–animal–environment and to reflect conclusive and consistent management systems. Such a system approach allows identifying the causes of varying N surplus and N utilisation.The REPRO model has been applied in the experimental farm Scheyern in southern Germany, which had been subdivided into an organic (org) and a conventional (con) farming system in 1992. Detailed series of long-term measuring data are available for the experimental farm, which have been used for evaluating the software for its efficiency and applicability under very different management, yet nearly equal site conditions.The organic farm is multi-structured with a legume-based crop rotation (N2 fixation: 83 kg ha−1 yr−1). The livestock density is 1.4 LSU ha−1. The farm is oriented on closed mass cycles.The conventional farm is a simple-structured cash crop system based on mineral N (N input 145 kg ha−1 yr−1). Averaging the years 1999–2002, the organic crop rotation reached, with regard to the harvested products, about 81% (6.9 Mg ha−1 yr−1) of the DM yield and about 93% (140 kg ha−1 yr−1) of the N removal of the conventional rotation. Related to the cropped area, the N surplus calculated for the organic rotation was 38 kg ha−1 yr−1 versus 44 kg ha−1 yr−1 for the conventional rotation. The N utilisation reached 0.77 (org) and 0.79 (con), respectively. The different structure of the farms favoured an enhancement of the soil organic nitrogen stock (35 kg ha−1 yr−1) in the organic crop rotation and caused a decline in the conventional system (−24 kg ha−1 yr−1). Taking account of these changes, which were substantiated by measurements, N surplus in the organic rotation decreased to 3 kg ha−1 yr−1, while it increased to 68 kg ha−1 yr−1 in the conventional system. The adjusted N utilisation value amounted to 0.98 (org) and 0.69 (con), respectively.  相似文献   

7.
No-till (NT) farming is considered as a potential strategy for sequestering C in the soil. Data on soil-profile distribution of C and related soil properties are, however, limited, particularly for semiarid regions. We assessed soil C pool and soil structural properties such as aggregate stability and strength to 1 m soil depth across three long-term (≥21 year) NT and conventional till (CT) experiments along a precipitation gradient in the central Great Plains of the USA. Tillage systems were in continuous winter wheat (Triticum aestivum L.) on a loam at Hutchinson and winter wheat-sorghum [Sorghum bicolor (L.) Moench]-fallow on silt loams at Hays and Tribune, Kansas. Mean annual precipitation was 889 mm for Hutchinson, 580 mm for Hays, and 440 mm for Tribune. Changes in profile distribution of soil properties were affected by differences in precipitations input among the three sites. At Hutchinson, NT had 1.8 times greater SOC pool than CT in the 0-2.5-cm depth, but CT had 1.5 times greater SOC pool in the 5-20-cm. At Hays, NT had 1.4 times greater SOC pool than CT in the 0-2.5-cm depth. Differences in summed SOC pool for the whole soil profile (0-1 m depth) between NT and CT were not significant at any site. The summed SOC pool with depth between NT and CT were only significant above the 5 cm depth at Hutchinson and 2.5 cm depth at Hays. At Hutchinson, NT stored 3.4 Mg ha−1 more SOC than CT above 5 cm depth. At Hays, NT stored 1.35 Mg ha−1 more SOC than CT above 2.5 cm depth. Moreover, NT management increased mean weight diameter of aggregates (MWDA) by 3 to 4 times for the 0-5-cm depth at Hutchinson and by 1.8 times for the 0-2.5-cm depth at Hays. It also reduced air-dry aggregate tensile strength (TS) for the 0-5-cm depth at Hutchinson and Hays and for the 0-2.5-cm depth at Tribune. The TS (r = −0.73) and MWDA (r = 0.81) near the soil surface were more strongly correlated with SOC concentration at Hutchinson than at Hays and Tribune attributed to differences in precipitation input. Results suggested NT impacts on increasing SOC pool and improving soil structural properties decreased with a decrease in precipitation input. Changes in soil properties were larger at Hutchinson (880 mm of precipitation) than at Hays and Tribune (≤580 mm). While NT management did not increase SOC pool over CT for the whole soil profile, the greater near-surface accumulation of SOC in NT than in CT was critical to the improvement in soil structural properties. Overall, differences in precipitation input among soils appeared to be the dominant factor influencing NT impacts on soil-profile distribution of SOC and soil structural properties in this region.  相似文献   

8.
Red soil may play an important role in nitrous oxide (N2O) emissions due to its recent land use change pattern. To predict the land use change effect on N2O emissions, we examined the relationship between soil N2O flux and environmental determinants in four different types of land uses in subtropical red soil. During two years of study (January 2005-January 2007), biweekly N2O fluxes were measured from 09:00 to 11:00 a.m. using static closed chamber method. Objectives were to estimate the seasonal and annual N2O flux differences from land use change and, reveal the controlling factors of soil N2O emission by studying the relationship of dissolved organic carbon (DOC), microbial biomass carbon (MBC), water filled pore space (WFPS) and soil temperature with soil N2O flux. Nitrous oxide fluxes were significantly higher in hot-humid season than in the cool-dry season. Significant differences in soil N2O fluxes were observed among four land uses; 2.9, 1.9 and 1.7 times increased N2O emissions were observed after conventional land use conversion from woodland to paddy, orchard and upland, respectively. The mean annual budgets of N2O emission were 0.71-2.21 kg N2O-N ha−1 year−1 from four land use types. The differences were partly attributed to increased fertilizer use in agriculture land uses. In all land uses, N2O fluxes were positively related to soil temperature and DOC accounting for 22-48% and 30-46% of the seasonal N2O flux variability, respectively. Nitrous oxide fluxes did significantly correlate with WFPS in orchard and upland only. Nitrous oxide fluxes responded positively to MBC in all land use types except orchard which had the lowest WFPS. We conclude that (1) land use conversion from woodland to agriculture land uses leads to increased soil N2O fluxes, partly due increased fertilizer use, and (2) irrespective of land use, soil N2O fluxes are under environmental controls, the main variables being soil temperature and DOC, both of which control the supply of nitrification and denitrification substrates.  相似文献   

9.
In the extremely arid (∼150 mm yr−1) eastern Canary Islands of Lanzarote, Fuerteventura and La Graciosa, agriculture has been sustained for decades by a traditional runoff-capture (RC) farming system known as “gavias”. Although the main goal of these systems is to increase water supply for crops, making unnecessary conventional irrigation, a secondary and equally important factor is that this system allows for sustainable agricultural production without addition of chemical or organic fertilizers. A field study was conducted to assess the impact of long-term agriculture (>50 yr) on soil fertility and to evaluate key factors affecting the nutrient sustainability of RC agricultural production. Soil fertility and nutrient dynamics were studied through chemical characterization of the arable layer (0-25 cm) of RC agricultural plots, adjacent natural soils (control) not affected by runoff and cultivation, and sediments contributed by a series of RC events. Results showed that RC soils have enhanced fertility status, particularly because they are less affected by salinity and sodicity (mean electrical conductivity = 1.8 dS m−1 vs. 51.0 dS m−1 in control soils; mean exchangeable sodium percentage = 11.1% vs. 30.6% in control soils), and have higher water and nutrient holding capacities (mean clay plus silt contents ≈87% vs. 69% in control soils). In general, sediments transported with the runoff and deposited in RC plots (average sediment yield ≈ 46 ton ha−1 yr−1), contain sufficient nutrients to prevent a progressive reduction of essential plant nutrients below natural levels in spite of nutrient uptake and removal by the harvested crop. Average additions of nitrogen, phosphorus and potassium with the runoff sediments were 33.6, 35.3 and 48.8 kg ha−1 yr−1, respectively. Results of this study show how a crop production system can be sustained in the long term by natural hydrological and biogeochemical catchment processes. This system maintains a nutrient balance that is not based on energy-intensive inputs of fertilizers, but is integrated in natural nutrient cycling processes, unlike other tropical farming agroecosystems.  相似文献   

10.
Evaluation of denitrification capacities is necessary to develop a sustainable manure management system in order to reduce NO3 leaching and N2O emissions from agricultural soils. Denitrification rates were measured using the acetylene inhibition technique on intact soil cores from eight Andosols under three different cropping systems in an intensive livestock catchment of central Japan. The N application rates ranged from 200 to 800 kg N ha−1 yr−1. The denitrification rates were highly variable across fields, and were influenced significantly by land uses and manure forms. Compared with upland fields, paddy rice fields had a greater denitrification rate up to 1380 and 85 mg N m−2 day−1 in the top 30-cm soil layer during flooding and non-flooding periods, respectively. In upland fields, the maximum value for the top 30-cm soils was 44 mg N m−2 day−1 and most of the rates were less than 10 mg N m−2 day−1. The greater denitrification rates were often associated with slurry application rather than composted dry manure. Overall, denitrification from Andosols in this study displayed a lower capacity than that of non-Andosols.  相似文献   

11.
Anaerobic digestion has become increasing popular for managing biowastes in rural China as it has the advantage of generating biogas, a renewable energy. A new challenge, however, is minimizing the environmental pollution resulting from the anaerobically digested slurry (ADS). The aim of this study was to assess the feasibility of using a paddy field to remediate ADS while simultaneously cultivating rice. A field experiment was trialed using six treatments based on varying nitrogen loadings over the period of a rice-growing season. These treatments were adjusted to the content of the N within the ADS and had loadings of 270, 405, 540 and 1080 kg N ha−1. These treatments were compared to a negative control (no fertilizer) and a positive control (chemical fertilizer) that consisted of urea applied at 270 kg N ha−1. The effects of these N sources and slurry remediation were monitored using standard methods to measure water quality, soil properties and changes in rice production. Rice grain yields were generally higher for all ADS treatments than for the urea N treatment. Standing water quality in the field could reach national discharge standards for all treatments within 7-8 days after each ADS irrigation. Groundwater quality and heavy metal concentrations in both soil and the rice grain were not affected by the ADS treatments. We suggest that the quantities of ADS irrigated in 867-1734 m3 ha−1 was not only safe for food quality (rice grain) and the receiving environment (water and soil), but also beneficial to soil fertility and rice grain yield.  相似文献   

12.
The impact of long-term pig manure application to a red soil in subtropical China on nitrate leaching was investigated in a field lysimeter experiment from 2002 to 2009. Simultaneously, nitrate leaching was simulated by water and nitrogen management model (WNMM) basing on these observed data to determine the environmental threshold of manure application. Nitrate concentrations in the drainage and nitrate leaching under low manure application (150 kg N ha−1 y−1) did not increase during the study period. Interestingly, the nitrate concentrations in drainage water following high manure application (600 kg N ha−1 y−1) increased exponentially in the first four years and then remained at 13 mg l−1 for the next four years. Addition of lime based on high manure application had no significant effect on nitrate concentrations or total nitrate leaching. WNMM simulated the variation in corn yields and nitrate leaching well. The environmentally safe threshold for long-term application of pig manure was 360 kg N ha−1.  相似文献   

13.
A field lysimeter/mini plot experiment was established in a silt loam soil near Lincoln, New Zealand, to investigate the effectiveness of urea fertilizer in fine particle application (FPA), with or without the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT - “Agrotain”), in decreasing nitrogen (N) losses and improving N uptake efficiency. The five treatments were: control (no N) and 15N-labelled urea, with or without NBPT, applied to lysimeters or mini plots (unlabelled urea), either in granular form to the soil surface or in FPA form (through a spray) at a rate equivalent to 100 kg N ha−1. Gaseous emissions of ammonia (NH3) and nitrous oxide (N2O), nitrate (NO3) leaching, herbage dry-matter (DM) production, N-response efficiency, total N uptake and total recovery of applied 15N in the plant and soil varied with urea application method and with addition of NBPT. Urea with NBPT, applied in granular or FPA form, was more effective than in application without NBPT: N2O emissions were reduced by 7-12%, NH3 emissions by 65-69% and NO3 leaching losses by 36-55% compared with granular urea. Urea alone and with NBPT, applied in FPA form increased herbage DM production by 27% and 38%, respectively. The N response efficiency increased from 10 kg DM kg−1 of applied N with granular urea to 19 kg DM kg−1 with FPA urea and to 23 kg DM kg−1 with FPA urea plus NBPT. Urea applied in FPA form resulted in significantly (P < 0.05) higher 15N recovery in the shoots compared with granular treatments and this was improved further when urea in FPA form was applied with NBPT. These results suggest that applying urea with NBPT in FPA form has potential as a management tool in mitigating N losses, improving N-response efficiency and increasing herbage DM production in intensive grassland systems.  相似文献   

14.
熊瑛  王龙昌  杜娟  赵琳璐  周泉  张赛 《环境科学》2017,38(5):2102-2110
土壤呼吸是土壤有机碳库输出的主要途径,为探讨垄作和不同秸秆覆盖量对旱三熟蚕豆田土壤呼吸及有机碳特征的影响,测定了平作无覆盖(T)、垄作无覆盖(R)、垄作+半量覆盖(RS1)、垄作+全量覆盖(RS2)这4个处理下的西南紫色土丘陵区蚕豆/玉米/甘薯旱三熟体系中蚕豆田土壤呼吸及有机碳变化,分析了土壤温度和水分与土壤呼吸的关系.结果表明,蚕豆生长季节农田土壤呼吸随作物生长一致,呈先增加后减弱的变化趋势,全生育期平均土壤呼吸速率差异显著,表现为RS2RS1TR,分别为3.365、2.935、2.683、2.263 g·(m~2·d)~(-1).垄作显著降低了蚕豆农田土壤呼吸速率,而秸秆覆盖显著提高土壤呼吸速率,且随着覆盖量的增加而增加.土壤呼吸速率随土壤温度(5 cm和10 cm)呈指数型增长,10 cm处的回归模型明显好于5 cm.10 cm土层Q10值表现为RS2RS1RT,分别为1.751、1.665、1.616、1.35.垄作和秸秆覆盖下土壤温度、水分与土壤呼吸速率的混合指数模型可以解释土壤呼吸速率变异的68%(R)、79%(RS1)和76%(RS2).垄作和秸秆覆盖下0~5 cm、5~10 cm、10~20 cm、20~30 cm土层土壤有机碳含量均得到不同程度的提高,且随着覆盖量的增加而增加,其中5~10 cm、10~20 cm土层表现为RS2RS1RT,差异达显著水平,且5~10 cm土层有机碳含量增幅最大;但垄作和秸秆覆盖仅显著提高了颗粒有机碳0~30 cm加权平均值,对颗粒有机碳占土壤有机碳比例的影响效应不显著.  相似文献   

15.
Sub-Saharan Africa is large and diverse with regions of food insecurity and high vulnerability to climate change. This project quantifies carbon stocks and fluxes in the humid forest zone of Ghana, as a part of an assessment in West Africa. The General Ensemble biogeochemical Modeling System (GEMS) was used to simulate the responses of natural and managed systems to projected scenarios of changes in climate, land use and cover, and nitrogen fertilization in the Assin district of Ghana. Model inputs included historical land use and cover data, historical climate records and projected climate changes, and national management inventories. Our results show that deforestation for crop production led to a loss of soil organic carbon (SOC) by 33% from 1900 to 2000. The results also show that the trend of carbon emissions from cropland in the 20th century will continue through the 21st century and will be increased under the projected warming and drying scenarios. Nitrogen (N) fertilization in agricultural systems could offset SOC loss by 6% with 30 kg N ha−1 year−1 and by 11% with 60 kg N ha−1 year−1. To increase N fertilizer input would be one of the vital adaptive measures to ensure food security and maintain agricultural sustainability through the 21st century.  相似文献   

16.
Physiological changes in crop plants in response to the elevated tropospheric ozone (O3) may alter N and C cycles in soil. This may also affect the atmosphere-biosphere exchange of radiatively important greenhouse gases (GHGs), e.g. methane (CH4) and nitrous oxide (N2O) from soil. A study was carried out during July to November of 2007 and 2008 in the experimental farm of Indian Agricultural Research Institute, New Delhi to assess the effects of elevated tropospheric ozone on methane and nitrous oxide emissions from rice (Oryza sativa L.) soil. Rice crop was grown in open top chambers (OTC) under elevated ozone (EO), non-filtered air (NF), charcoal filtered air (CF) and ambient air (AA). Seasonal mean concentrations of O3 were 4.3 ± 0.9, 26.2 ± 1.9, 59.1 ± 4.2 and 27.5 ± 2.3 ppb during year 2007 and 5.9 ± 1.1, 37.2 ± 2.5, 69.7 ± 3.9 and 39.2 ± 1.8 ppb during year 2008 for treatments CF, NF, EO and AA, respectively. Cumulative seasonal CH4 emission reduced by 29.7% and 40.4% under the elevated ozone (EO) compared to the non-filtered air (NF), whereas the emission increased by 21.5% and 16.7% in the charcoal filtered air (CF) in 2007 and 2008, respectively. Cumulative seasonal emission of N2O ranged from 47.8 mg m−2 in elevated ozone to 54.6 mg m−2 in charcoal filtered air in 2007 and from 46.4 to 62.1 mg m−2 in 2008. Elevated ozone reduced grain yield by 11.3% and 12.4% in 2007 and 2008, respectively. Global warming potential (GWP) per unit of rice yield was the least under elevated ozone levels. Dissolved organic C content of soil was lowest under the elevated ozone treatment. Decrease in availability of substrate i.e., dissolved organic C under elevated ozone resulted in a decline in GHG emissions. Filtration of ozone from ambient air increased grain yield and growth parameters of rice and emission of GHGs.  相似文献   

17.
长期施肥对棕壤有机碳储量及固碳速率的影响   总被引:8,自引:0,他引:8  
利用棕壤肥料长期定位试验,研究了不同施肥条件下棕壤有机碳在0~60 cm土层的含量和储量特征以及土壤固碳速率.试验共设6个处理,即氮磷肥有机肥配施(M_2NP)、氮肥有机肥配施(M_2N)、单施有机肥(M_2)、单施氮肥(N)、氮磷肥配施(NP)和不施肥处理(CK).结果表明:经过31年长期不同施肥,各处理土壤有机碳(SOC)含量和储量的剖面分布均呈现随土层深度增加而显著降低的规律.本试验条件下M_2NP、M_2N、M_2、NP、N、CK处理的耕层有机碳富集系数分别为0.465、0.455、0.407、0.48_2、0.393、0.471,表明耕层土壤对有机碳的保持强度最强.在0~60 cm土层土壤有机碳储量表现为M_2NP、M_2NM_2、NPNCK,有机肥和化肥配施能够显著提高土壤有机碳含量和储量.与试验前相比,CK处理各土层土壤有机碳含量和储量均显著降低.各处理碳库管理指数(CPMI)表现为M_2NPM_2NM_2NNPCK.分析不同施肥处理土壤固碳速率可知,与试验前相比,CK处理表现为碳的净释放,固碳速率达-401.4 kg·hm~(-_2)·a~(-1);固碳速率最高的为M_2NP,M_2N,分别达到489kg·hm~(-_2)·a~(-1)、440._2 kg·hm~(-_2)·a~(-1).综合结果表明,化肥、有机肥配施所产生交互效应更有利于棕壤有机碳储量的增加及固碳速率的提高.  相似文献   

18.
In the search for new technologies that would ensure optimum yield and environmental sustainability, various irrigation, nitrogen and cropping system management strategies for the production of vegetables with a shorter growing period were assessed at a benchmark site in Slovenia for the years 2006 and 2007. In the studied years four irrigation and fertilization treatments were applied: (1) 50% drip irrigation of plants water requirements ETcrop and the farmer's practice of fertilisation (broadcasting), (2) fertilisation and 100% drip irrigation (fertigation), (3) the farmer's practice of irrigation (sprinkler irrigation using water stored in plastic tanks) and fertilisation, and (4) control (the farmer's practice of irrigation but no fertilisation). An equivalent of 80, 80 and 200 kg ha−1 of nitrogen (N), 50, 50 and 80 kg ha−1 of phosphorous (P) and 120, 120 and 300 kg ha−1 of potassium (K) was added for iceberg lettuce, endive and cabbage, respectively. Nitrogen (N) labelled fertilizer (15N) was applied to trace the movement of the applied N fertiliser. The tested irrigation and fertilisation techniques for the production of vegetables with a shorter growing period in the Slovenian climate showed that environmentally sustainable practices (split application of nutrients compared to broadcast incorporating fertilisation) should be a practice of choice in water protection zones. The results confirm that fertigation and improved irrigation scheduling can be an effective way of minimizing nitrate leaching, and should be considered for vegetable production in or close to groundwater protection zones.  相似文献   

19.
旱地农田温室气体净排放(以全球增温潜势表示)主要取决于土壤固碳速率和氧化亚氮(N2O)排放量.基于长期定位施肥试验,综合分析2010~2017年表层(0~20 cm)土壤有机碳含量和2014~2017年N2O排放通量的观测结果,定量评价秸秆还田对关中平原冬小麦-夏玉米农田土壤固碳速率、N2O年排放量和全球增温潜势的影响...  相似文献   

20.
Agricultural activities are the main source of non-point pollution in the Taihu Lake region, and therefore reduction of nitrogen (N) fertilizer is imperative in this area. A two-year experiment was carried out in a paddy field of summer rice-winter wheat rotation in the Taihu Lake area, and the rice growing seasons were mainly concerned in this research. Grain yield, N accumulation at rice crucial stages, N use efficiency, as well as N losses via run off during rice growing season were determined under different N application rates. No significant differences were observed in grain yield under N fertilizer application rates of 135-270 kg N ha−1 (50-100% of the conventional N application rate). Nitrogen accumulation before the heading stage (Pre-NA) accounted for 61-95% of total nitrogen absorption in mature rice, and was positively correlated with straw dry matter at harvest. Positive correlations were found between Pre-NA and straw (0.53, p < 0.05), and between grain yield and N accumulation after the heading stage (Post-NA) (0.58, p < 0.05), suggesting that increasing nitrogen accumulation after the heading stage is crucial for grain yield improvement. Poor agronomic efficiency of applied N (AEN), partial factor productivity of applied N (PFPN) and internal utilization efficiency of applied N (IEN) were observed for the higher soil fertility and a higher N fertilizer input; a simple N fertilizer reduction could significantly increase the nitrogen use efficiency in this region. Nitrogen loss via runoff was positively linearly related to N application rates and severely affected by rainfall events. The highest-yielding N rates were around 232-257 kg N ha−1, accounting for 86-95% of the conventional N application rates for the rice season. To reduce N losses and enhance N use efficiency, the recommendable N fertilization rate should be lower than that of the highest yield rate for rice season. Our findings indicated that nitrogen fertilizer reduction in the Taihu Lake area is feasible and necessary for maintaining grain yield, enhancing nitrogen use efficiency, and reducing environmental impact. However, the longer-term yield sustainability for the proper N application rate needs to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号