首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
广州大学城大气PM_(2.5)质量浓度与影响因素   总被引:5,自引:1,他引:4  
选择广州大学城代表性学生宿舍、教室、食堂等多个室内采样点及几个室外采样点,准确测定各采样点大气中PM2.5的质量浓度,分析各室内和室外采样点大气中PM2.5污染程度及分布特征;根据同步记录的气象数据,分析评价气象因子对大气PM2.5质量浓度的影响。  相似文献   

2.
良好的室内空气质量是健康人居的必要条件。PM2.5是影响日常室内空气质量的主要因素。中国室内PM2.5污染程度较重,其主要的污染来源有:吸烟、生活燃料燃烧、烹饪和清扫等室内活动以及室外大气颗粒物的渗透作用等。同时,文章就如何减轻室内空气的PM2.5污染提出多方面的综合防控措施。  相似文献   

3.
贵州农村冬季不同燃料燃烧产生的室内外PM_(2.5)研究   总被引:1,自引:0,他引:1  
为了解贵州农村家庭冬季不同燃料燃烧产生的室内外PM2.5污染状况及其产生与变化规律,2011年11月~2012年2月间选择燃煤村寨水城县A村、烧柴村寨从江县B村和沼气推广示范村寨贵阳市乌当区C村各1户,每户设置厨房、卧室和室外3个监测点,进行连续5天PM2.5小时浓度和日均浓度的监测。结果表明:贵州农村室内因冬季燃烧不同燃料,产生的PM2.5浓度水平差异较大,但3户室内外空气中PM2.5的浓度大部分高于GB 3095—2012《环境空气质量标准》中PM2.5日均浓度限值75μg/m3,其中燃煤的A村室内PM2.5的浓度水平最高;厨房PM2.5的浓度,燃煤的家庭>燃柴的家庭>燃沼气的家庭,表明沼气是相对最为清洁的能源;而厨房与卧室相比,燃煤家庭和燃柴家庭厨房PM2.5平均小时浓度均高于卧室的PM2.5平均小时浓度,表明厨房应是室内主要的因燃料引起的环境空气污染区域;B村室外环境空气中PM2.5日均浓度高于其卧室中PM2.5日均浓度,表明除燃料燃烧本身引起的室内环境空气污染外,改善室外环境空气质量也是不容忽视的重要方面。  相似文献   

4.
西安地铁环境中PM_(10)、PM_(2.5)、CO_2污染水平分析   总被引:1,自引:1,他引:0  
樊越胜  胡泽源  刘亮  谢伟  艾帅 《环境工程》2014,32(5):120-124
针对地铁环境空气污染状况,于2013年6月对西安地铁2号线各监测车站的站厅、站台、车厢及室外的PM10、PM2.5、CO2的污染水平进行了监测分析。结果表明:站厅、站台和车厢的PM10浓度均未超标;PM2.5浓度最大值分别为97.97,131.56,97.1μg/m3,超标率分别为30.6%、75.4%、29.5%,各监测站点细颗粒物污染较严重。车厢内部CO2最高浓度超过2 357 mg/m3,缺乏足够的新鲜空气来满足乘客的呼吸需求。对PM10和PM2.5源的相关性分析表明,站台和车厢环境中的颗粒物有强烈的相关性,二者有共同的来源。对站台和车厢环境中的PM10、PM2.5与室外环境的相关性分析表明,PM10有强烈的相关性(R2=0.83,0.78);PM2.5有较弱的相关性(R2=0.43,0.11)。各监测车站站台PM2.5/PM10为0.64~0.83,平均值为0.72;车厢PM2.5/PM10为0.68~0.85,平均值为0.78。  相似文献   

5.
利用2013年1-12月重庆市北碚区国控点实时发布的颗粒物污染监测数据,对PM2.5和PM10的达标情况、变化趋势及其两者之间相关性进行了分析。研究表明:2013年北碚区PM10年均值为100.2μg·m-3,超过了新国标Ⅱ级标准,PM10日均值超标天数为57天,全年达标天数比例为84.4%;北碚区PM2.5年均值为67.9μg·m-3,超过了新国标Ⅱ级标准,PM2.5日均值超标天数为94天,全年达标天数比例为74.2%;PM10和PM2.5有明显的季变性特征,其中春季PM2.5与PM10的污染最重,污染日分别占全年的58.5%和56.1%。PM2.5占PM10比例较高,PM2.5/PM10平均值为66.6%。PM2.5与PM10回归线性较好,y=0.7900x-11.280,R2=0.930;PM2.5和PM10的Pearson相关系数为0.964;PM2.5与PM10日均值呈显著线性相关。  相似文献   

6.
为了解学校室内可吸入颗粒物的污染特征及同时间段内与相应室外大气浓度的关系,对学校图书馆室内外PM2.5和PM10进行了质量浓度监测,并且分析和讨论了影响室内空气质量的因素.结果显示,室内PM2.5和PM10的浓度范围分别为16.7~403.5 μg/m3和33.3~537.0 μg/m3,室内可吸入颗粒物中细颗粒物占主要部分,并且PM2.5质量浓度与PM10质量浓度趋势基本一致.室外可吸入颗粒物质量浓度明显影响室内颗粒物的浓度值,而室内使用空气转换装置和及时的清洁有助于降低室内可吸入颗粒物的浓度.  相似文献   

7.
广州市区PM_(2.5)的污染特征   总被引:3,自引:0,他引:3  
陈瑜 《环境保护科学》2010,36(3):7-8,11
对广州市区PM2.5的污染状况进行了分析,结果表明广州市区的PM2.5呈现冬季浓度较高,夏季较低的季节性特征;PM2.5的日变化呈现出明显的双峰形;与PM10的相关性分析表明,PM2.5与PM10具有良好的线性关系。PM2.5/PM10的值约为0.59,表明广州市区空气中细颗粒物在PM10中的比重大于粗颗粒物,鉴于PM2.5的危害性及所占比例,应重视对其的监测。  相似文献   

8.
温泉宾馆室内PM_(10),PM_(2.5),CO_2和~(222)Rn的研究   总被引:1,自引:0,他引:1  
对广东省 4座温泉宾馆室内外氡(222Rn)浓度和温泉水氡浓度进行研究,同时利用便携式探测器对室内外 PM10,PM2.5,CO2和CO 等污染物暴露水平进行直接测定.结果表明,温泉宾馆室内使用温泉水时氡浓度明显高于广东省室内平均氡浓度.除 CO 外,室内 PM10,PM2.5 和CO2 浓度都较高,其中 PM10 和 CO2 的超标率分别达到 67%和 89%.说明温泉宾馆室内不仅存在一般性污染物,而且存在高浓度的 Rn. 222  相似文献   

9.
PM2.5是指大气中动力学直径≤2.5μm的颗粒物,也称为可入肺颗粒物。北京的大气污染是我国在快速发展过程中出现的典型的城市大气环境问题的代表,具有明显的烟煤型污染与光化学污染相结合的复合型污染特征,北京市PM2.5的污染已经相当严重。为了进一步研究北京市PM2.5的特性,对北京市PM2.5的污染特征、化学组成、源解析方面进行探讨,并提出了相应的防治对策。  相似文献   

10.
海口市PM_(2.5)和PM_(10)来源解析   总被引:2,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

11.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因.  相似文献   

12.
PM2.5的污染对生态环境和人的生存条件具有重要影响,针对PM2.5的监测显得非常迫切。近年来,在国际社会上针对PM2.5的监测分析越来越多,我国在部分地区也进行了PM2.5的分析和采集工作,这表明,针对PM2.5的监测具有普遍性和重要性。为了进一步分析我省关于PM2.5监测工作的进展情况,本文根据云南省不同环境中PM2.5的监测结果,对我省v的监测现状做了深入总结。以目前对我省大气污染情况的分析和预测,指出v监测的发展前景和v污染的主要原因,并提出相应的治理措施。  相似文献   

13.
元宵节期间北京PM_(2.5)单颗粒的物理化学特征   总被引:2,自引:0,他引:2  
采集2014年元宵节期间北京PM2.5样品,使用场发射扫锚电镜-能谱仪观察北京PM2.5单颗粒的显微形貌和元素组成,并利用图像分析系统对PM2.5的粒径进行分析.结果表明:PM2.5的单颗粒类型以烟尘集合体、矿物颗粒和飞灰为主;烟花爆竹燃放产生的PM2.5是造成元宵节期间北京PM2.5浓度升高的主要原因;PM2.5中总颗粒物个数呈现先升高后降低的趋势;元宵节期间北京PM2.5中大部分颗粒物的粒径小于0.7μm;然而,重污染天气PM2.5中粒径大于0.7μm颗粒物的数量明显高于轻污染天气.  相似文献   

14.
应用中流量采样器TSP-PM10-PM2.5对我国肺癌高发区宣威地区6个乡村19家农户进行采样,运用滤膜称重法来分析不同燃料类型室内及相应室外的大气颗粒物质量浓度特征.结果显示,各村庄室内、室外PM10质量浓度比值(I/O)变化范围为1.74~2.87,说明室内PM10污染主要由室内污染源引起;做饭时段室内PM10污染比其他时段严重,尽管烟囱可以将大量的污染物排出室外,但室内颗粒物的质量浓度依然较高.室内PM10质量浓度依燃料类型从高到低依次为块煤用户>型煤用户>燃柴用户>用电用户,室内PM2.5质量浓度依燃料类型从高到低表现为块煤用户>燃柴用户>用电用户;块煤、型煤用户的室内PM10的质量浓度平均值(442.49μg/m3、399.14μg/m3)超过国家室内空气质量标准日均值150μg/m3,污染严重;燃柴和用电用户室内PM10的质量浓度平均值(145.50μg/m3、119.91μg/m3)低于国家室内空气质量标准日均值150μg/m3,污染较轻.块煤用户PM2.5质量浓度日均值(132.58μg/m3)超过2012年2月29日环境保护部发布的环境空气质量标准二级标准75μg/m3,而燃柴和用电户PM2.5的质量浓度(55.24μg/m3、65.02μg/m3)均低于环境空气质量标准二级标准75μg/m3,说明块煤用户室内细颗粒污染较重,用电和燃柴用户室内细颗粒物污染相对较轻.  相似文献   

15.
武汉市与西安市颗粒物PM_(10)、PM_(2.5)的污染水平分析   总被引:1,自引:0,他引:1  
利用武汉、西安两市2013年PM10与PM2.5的监测数据,统计分析了武汉市和西安市PM10与PM2.5的污染水平,并比较了两城市的污染水平。根据GB 3095—2012《中华人民共和国环境空气质量标准》规定的二级浓度限值,可知武汉市和西安市PM2.5的污染都非常严重,PM10的污染相对较轻。从整体上说,西安市的污染水平要比武汉市严重,其中西安市PM10中PM2.5约占79%。武汉市和西安市的相关部门都应重视PM10和PM2.5的污染问题。  相似文献   

16.
以昆明市为重点,调查了昆明、玉溪、曲靖等滇中3个主要城市的PM2.5监测与污染现状,初步分析认为:滇中城市PM2.5污染主要来源于建筑施工扬尘、汽车尾气排放和工业排放,且在不同的城市,上述3项PM2.5污染主要来源所占的比重有所不同。据此提出了滇中城市PM2.5污染综合防治对策措施。  相似文献   

17.
乌鲁木齐市重污染期间PM_(2.5)污染特征与来源解析   总被引:1,自引:0,他引:1  
目前有关我国城市大气重污染期间PM2.5污染特征及其来源的研究较少,为深入了解典型城市大气重污染期间PM2.5的污染特征与来源构成,于2013年1月19—30日在乌鲁木齐市采集PM2.5样品,并依据相关划分标准,确定1月19—28日为重污染天气.分析了重污染天气下ρ(PM2.5)及主要化学组成(包括水溶性离子、无机元素和碳组分),运用统计学方法研究了重污染期间PM2.5的污染特征,并且采用富集因子法和CMB受体模型解析了PM2.5的来源构成.结果表明:大气重污染期间ρ(PM2.5)严重超标,其中米东区环境保护局采样点的ρ(PM2.5)最高,其次是铁路局、市监测站;PM2.5化学组分以SO42-、TC、Si和NO3-为主,其中二次离子占ρ(PM2.5)的43.1%;城市扬尘、煤烟尘和二次粒子是环境空气中PM2.5的主要污染源类,三者在乌鲁木齐市以及米东区的分担率分别为24.7%、15.6%、38.0%和20.8%、28.0%、36.2%,其中二次硫酸盐的分担率在两地更分别达到28.6%和27.0%.  相似文献   

18.
东莞城区环境空气细颗粒物PM_(2.5)特征分析   总被引:4,自引:4,他引:0  
采集2010—2012年东莞市城区5个采样点环境细粒子PM2.5,根据PM2.5浓度分析其污染特征,并结合气象要素分析其影响因素。研究表明:2010—2012年,东莞市城区各测点PM2.5年均浓度在0.035~0.054 mg/m3,PM2.5污染具有明显的夏季和非夏季2种季节性特征,夏季污染相对较轻,平均值为0.036 mg/m3,非夏季污染较严重,平均值达到0.053 mg/m3;PM2.5超标情况逐年好转,2010,2011,2012年超标率分别为20.3%、9.9%、4.6%。气象因素对PM2.5浓度变化有一定的影响,PM2.5浓度变化与风速呈一定程度的负相关,与相对湿度之间呈负相关关系,与气压之间呈正关系,而非夏季温度与其浓度变化关系不明显。  相似文献   

19.
PM2.5与人们的生活与健康休戚相关,对PM2.5的预测是一项利国利民的工作。根据大气污染物浓度限值将南京市PM2.5日平均浓度数据分为6个等级,并基于离散参数马尔科夫链建立PM2.5的预测模型;然后利用一步状态转移概率矩阵,通过C-K方程对模型有效性进行检验;最后根据离散参数马尔科夫链的遍历性得到稳态分布和重现期,并对未来南京市PM2.5污染状态进行预测。结果表明:该离散参数马尔科夫链模型用于PM2.5等级预测是简单且有效的;通过此模型预测得到未来南京市PM2.5污染将有所减轻,与过去一段时间相比PM2.5等级处于优、良和轻度污染的概率略微上升,重度污染和严重污染的概率几乎保持不变。  相似文献   

20.
获取武汉市2013年全年10个监测点PM2.5监测数据,采用数理统计方法和GIS空间分析方法分析其时间变化特征和空间分布特征。2013年武汉市城区PM2.5年均值为89.0μg/m3,清洁对照点年均值75.2μg/m3。月变化上,1-7月,浓度逐月下降至7月份达到最低;7-12月,浓度整体上升,10月份浓度上升明显以至11月份有明显回落。日变化上,上午9:00为日间浓度峰值,下午16:00达到低谷;夜间浓度高于日间浓度且夜间变化幅度较小。城区内部污染差异明显,夏季PM2.5浓度空间异质性相对冬季更强;工业区和人口集中区污染最严重,城市绿地和公园局部污染相对较轻;污染程度变化的一致性不仅与距离有关,受周边环境影响更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号