首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
北京地区沙尘天气及其影响   总被引:28,自引:0,他引:28       下载免费PDF全文
通过对北京地区1954~2001年气象台站的天气现象的观测资料以及最近几年20多个台站资料的分析.结果表明,北京一年中的沙尘暴主要集中在每年的春季(3~6月份),其中4月份的沙尘暴发生次数为全年最高,约占所有沙尘暴的50%;北京沙尘暴、扬沙和浮尘天气现象发生的频次有减少的趋势;北京地区沙尘天气的发生有一定的周期性变化规律;北京地区主要是以扬沙天气为主,占总沙尘天气的74.15%,其次是浮尘天气(18.09%)和沙尘暴(7.76%);北京地区的沙尘天气在空间分布上不均匀;北京地区沙尘天气现象与天气气候背景、周边和本地地表生态系统、本地建筑工地以及裸露地等有密切的关系;沙尘天气对北京重污染的贡献较大.  相似文献   

2.
中国西北及青藏高原沙尘天气演变特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用西北地区及青藏高原177 个气象站1971~2006 年的观测资料,分析了该区域发生的不同等级的沙尘(浮尘、扬沙、沙尘暴)的空间分布特征、移动规律和变化趋势.结果表明,12 月~翌年2 月,沙尘暴和扬沙发生的中心位于高原西南部;3 月,除高原西南部外,在河西走廊及其东部也出现沙尘暴和扬沙;4~5 月,高原西南部沙尘暴和扬沙的日数迅速减少,发生区北移到35ºN~40ºN 的区域.南疆和河西走廊及其东部,是春季浮尘的高发区.从12 月到4 月,沙尘暴和扬沙的高发区是逐渐向北和向东移动的;而浮尘的高发区主要在南疆,不随月份的变化而移动.近36a 来,沙尘的影响范围和发生日数,均呈显著减小的趋势.易于发生沙尘天气的区域,同时也是沙尘发生日数减小趋势最为显著的区域.  相似文献   

3.
对塔克拉玛干沙漠腹地塔中地区进行了长达6a的试验观测研究,获得了该地区沙尘气溶胶的基本特征:塔中地区浮尘、扬沙出现日数呈上升趋势,而沙尘暴日数呈下降趋势,沙尘天气出现的频率和强度是影响沙漠地区沙尘气溶胶浓度的主要因素.可吸入颗粒物(PM10)月平均质量浓度峰值区分布在春夏两个季节,3~5月是主峰值区域,7~8月是次峰值区,春季PM10平均浓度在1000mg/m3左右变化,夏季在400~900mg/m3之间,秋冬两季浓度较低基本上在200~400mg/m3之间变化.每年的3~9月是总悬浮颗粒物(TSP)质量浓度较高的月份,4~5月是主峰值区,7~8月为次峰值区;2005年TSP质量浓度最低,年平均值为1105.0mg/m3,2009年略高于2008年,年平均浓度为1878.0 mg/m3,2008年5月TSP平均质量浓度是全年最高值,浓度值达到7415.0mg/m3.沙尘天气过程中大气颗粒物浓度变化具有以下规律:晴天<浮尘天气<浮尘、扬沙天气<沙尘暴天气.风速大小直接影响大气中颗粒物浓度,风速越大颗粒物浓度越高.气温、相对湿度和气压是影响沙尘暴强度的重要因素,也间接影响大气中颗粒物浓度的变化.  相似文献   

4.
民勤近地面沙尘暴气溶胶浓度变化特征初探   总被引:2,自引:0,他引:2  
借助近地面沙尘暴监测系统对民勤沙尘源区不同沙尘天气的气溶胶浓度进行了监测,初步分析了民勤近地面沙尘暴气溶胶浓度的变化特征.结果表明:沙尘暴气溶胶浓度春季最高,为14.61 mg·m-3;夏季逐渐降低,为12.49 mg·m-3;秋季无沙尘暴出现,气溶胶浓度最小;冬季趋于回升,可达9.82 mg·m-3,沙尘暴气溶胶浓度季节变化与沙尘暴发生频率相一致.不同沙尘天气条件下沙尘气溶胶浓度表现为强沙尘暴最大,为18.80 mg·m-3;中沙尘暴次之,为13.56 mg·m-3;扬沙浮沉天气较小,只有3.07 mg·m一.随着沙漠向绿洲的过渡,沙尘暴气溶胶浓度明显降低,沙漠、绿洲边缘、绿洲3个下垫面条件下沙尘暴气溶胶浓度依次为21.07 mg·m-3、12.09 mg·m-3、6.49 mg·m-3.沙尘暴气溶胶浓度随观测高度变化遵循幂函数规律,浓度梯度变幅表现为沙尘暴高发季节大于低峰季节,沙尘暴天气大于扬沙浮尘天气,沙漠下垫面大于绿洲下垫面;不同下垫面条件下沙尘暴气溶胶浓度在41 m高度处趋于一致,表明沙尘源区的沙尘浓度在约40 m范围内受地面影响较为显著.  相似文献   

5.
沙尘暴对呼吸及循环系统疾病日门诊量的影响   总被引:11,自引:1,他引:10       下载免费PDF全文
对沙尘天气频发区甘肃省武威市的7所大、中型医院在2004、2005年沙尘天气高发时段(3月1日~5月31日)的呼吸系统和循环系统每日门诊人数进行了调查,采用半参数广义相加模型(GAM),在排除了医院日门诊量的长期趋势、大气污染因素、气象因素、日历效应等因素之后,分别对每年进行分析.结果表明,沙尘暴和扬沙天气与呼吸、循环系统疾病日门诊人数的增加有联系,且均表现为滞后效应,其影响程度为沙尘暴大于扬沙天气,沙尘暴和扬沙天气对健康的影响因不同年份而不同,表明沙尘天气对健康的影响受多种因素的影响.沙尘暴对健康的影响有性别差异.  相似文献   

6.
沙尘天气是河西走廊东部多发的灾害天气之一.为提高河西走廊东部沙尘天气的预测、预报、预警水平,更好地预防沙尘灾害和沙尘天气对空气质量的污染.利用河西走廊东部5个气象站1960-2016年逐日沙尘(包括浮尘、扬沙及沙尘暴)资料和四季平均气温、最高气温、最低气温、平均风速、大风日、蒸发量、降水量、相对湿度等资料,运用统计学方法分析了河西走廊东部各强度沙尘日的时空分布特征以及沙尘日与气象因子的相关性.结果表明:受海拔、地形地貌以及天气系统等影响,各强度沙尘日(除浮尘外)由东北向西南呈递减趋势.年代、年各强度沙尘日呈显著减少趋势,沙尘暴、扬沙、浮尘递减率分别为-2.436、-5.277、-5.719 d/(10 a),气候趋势系数均通过了α=0.01的显著性水平检验.年沙尘日的时间序列均存在着6~8 a的准周期变化.各强度沙尘日均为春季最多,秋季最少,且各季节沙尘日均呈显著减少趋势,递减率为春季>夏季>冬季>秋季,气候趋势系数均通过了α=0.01的显著性水平检验.各强度沙尘日月变化比较一致,高峰值出现在4月,低谷值出现在9月.气象因子对沙尘天气有一定的影响,同一季节气象因子对各强度沙尘日的影响相对一致,但不同的季节气象因子对各强度沙尘日的影响不一致.热力因子和动力因子是影响沙尘天气的主导因子,水分因子的影响较弱.研究显示,气候变暖、冷空气活动频次和强度减弱是沙尘日减少的主要原因之一,大气环流的季节性转变是沙尘天气季节性变化的主要原因.   相似文献   

7.
蒋高明 《环境保护》2006,(10):50-51
今春北京发生的沙尘暴令人记忆犹新.截至5月11日,2006年我国北方共出现了12次沙尘天气过程,其中强沙尘暴5次、沙尘暴3次、扬沙4次.今年是近7年以来沙尘天气的第二严重年份.而在此以前的我国沙尘暴趋势是,前30-4年中平均3年1次,而到上世纪90年代它就每年光顾1回了;2000年很快增加到12次;2001年,我国北方地区共出现18次沙尘天气过程,其中强沙尘暴过程41天;2002年3月18-21日,我国北方大部分地区自西向东经历了20世纪以来最强的1次沙尘天气过程,强沙尘暴席卷我国北方140万平方公里.2003-2005,由于老天帮忙,加上采取了适当的保护措施,沙尘天气有所缓和.今年沙尘暴再度频发,说明我们治理沙尘暴的道路还很漫长.  相似文献   

8.
沙尘天气对环境空气中PM_(10)影响分析   总被引:4,自引:1,他引:4  
利用2002年沈阳市沙尘天气时的环境监测资料和气象资料进行分析得出浮尘天气时环境空气中PM10浓度最大,空气污染最严重,空气中的尘主要来源于我国西北沙漠地区;沙尘暴出现频率低,持续时间短,但强度大,空气中PM10主要来源科尔沁沙漠、省内荒漠地带及本市地表沙尘;扬沙天气污染相对较轻,空气的PM10以本地地表尘为主。  相似文献   

9.
北京市沙尘天气中矿物单颗粒的物理化学特征   总被引:5,自引:4,他引:1  
应用场发射扫描电子显微镜和X射线能谱仪,研究了2005年4月北京市区2次典型沙尘天气PM10样品中矿物单颗粒的形貌、数量-粒度分布和化学组成.研究表明:沙尘天气样品中的矿物颗粒呈边缘锋利的不规则状;数量-粒度分布在1.0~1.5 μm出现明显的峰值.根据X射线能谱的定量数据,将721个矿物单颗粒分为7类.沙尘天气样品中的矿物颗粒主要以硅铝酸盐和石英矿物为主,并且有富Ca颗粒出现.大部分颗粒是2种或更多种矿物的内部混合物.沙尘天气富Ca颗粒占矿物单颗粒总数的5.9%,主要以CaCO3以及硅铝酸盐或石英的混合物的形式存在;非沙尘天气样品中富Ca颗粒含量高达14.5%,其中约有一半来自人为源排放.单个矿物颗粒中Ca含量以及m(Ca)/m(Al)可以用来区分外来沙尘源与本地矿物颗粒.   相似文献   

10.
影响北京地区沙尘天气的源地和传输路径分析   总被引:16,自引:3,他引:13       下载免费PDF全文
利用1980—2005年的地面气象观测资料和沙尘天气过程的卫星遥感资料,逐次分析了影响北京地区沙尘天气过程的演变规律.借助地理信息系统,确定影响北京地区沙尘暴过程的源地和移动路径.结果表明:北京地区沙尘暴主要发生在春季和初夏, 4月最多;从历年统计资料看,北京地区沙尘次数总体呈逐渐减少趋势,但20世纪90年代后期,浮尘日数有所增加.根据沙尘源地的起沙情况,将沙尘源地划分为初始源地和加强源地.境外初始沙尘源地位于蒙古国中部和东南部地区,境内位于中国与蒙古国边界;境内加强源地位于我国内蒙古中西部的沙漠、戈壁和沙化草原地区,以及甘肃河西走廊和农牧交错带大面积的开垦地.影响北京地区沙尘天气的传输路径主要包括北路、西路和西北路,其中以西北路和偏北路为主.   相似文献   

11.
利用首都圈地区 11个基本和基准气象台站近 50年的观测资料 ,给出了这 11个台站自建站至 2000年沙尘暴发生日数的年际变化序列 ,并分析了其与气温、降水和风的关系 .结果表明 :首都圈沙尘暴具有很大的时空差异 ,西北部沙尘暴日数明显多于东南部 .沙尘暴发生日数的年际波动很大 ,同一站点最多年份与最少年份相差几十倍 .二连浩特、阿巴嘎旗、锡林浩特、丰宁、张家口、怀来和北京等 7个气象站自建站至 2000年的沙尘暴日数呈显著的下降趋势 ,其余 4个气象站没有显著的上升或下降趋势 .首都圈地区沙尘暴季节性显著 ,多集中在春季 .与沙尘暴日数相关性最强的是起沙风日数 ,有 6个站点的沙尘暴日数同起沙风日数呈显著的正相关 ;其次是气温 ,有 3~ 4个站点的沙尘暴日数与年均温、冬季均温和春季均温呈显著负相关 ;降水量与沙尘暴日数的相关性最弱 ,只有朱日和 1个站点与春季降水量呈显著负相关 .另外有 4个站点的沙尘暴日数与气温、降水和风均没有显著的相关关系 .根据上述研究结果就首都圈沙尘暴的时空变异性及其与气候因素的关系等问题进行了讨论 .  相似文献   

12.
采用美国环境保护局推荐的公式,分析了塔克拉玛干沙漠1960~2008年PM50和PM30起尘速率的变化趋势及影响因子. 结果表明,1960~2008年, 塔克拉玛干沙漠PM50和PM30起尘速率及沙尘暴频率均呈显著减小趋势, 粉尘粒径越细, 起尘速率减幅越大;塔克拉玛干沙漠21世纪初的风沙活动比上世纪60年代减小了65.01%~85.14%;年均风速的减少和年降水量的增加对PM50起尘速率减少的贡献率分别为37.8%和62.2%, 年均风速和起沙风频率的减少及年降水量的增加对PM30起尘速率减少的贡献率分别为9.1%、33.2%和57.7%, 年均风速和起沙风频率的减少对沙尘暴频率减少的贡献率分别为41.3%和58.7%;大风沙尘天气可能使大气中粗、细颗粒物总量均有所增加, 但细颗粒物增加更明显.  相似文献   

13.
影响北京沙尘源地的气候特征与北京沙尘天气分析   总被引:13,自引:3,他引:10       下载免费PDF全文
分析并找出了影响北京沙尘暴天气的源地,该源地主要位于北京北部的浑善达克沙地的西北部边缘,内蒙古中西部、河套以西地区的沙漠、荒漠化地区以及干旱、半干旱地区广大的农业开垦区,指出影响北京的沙尘传输路径有3条,即西路、北路和西北路.对源地的气候特征做进一步分析表明,源地的气候特征为温暖干旱、降水不足,这些因素加速了沙尘天气的发生.同时将源地春季降水和北京沙尘天气相比较,发现北路和西北路源地春季降水和北京沙尘暴天气有较好的负相关,西路源地春季降水和北京浮尘天气有较好的负相关.   相似文献   

14.
Recent observations of Asian dust storms show an eastern expansion of the source area to degraded lands, where dust emissions have been little studied. The dust concentrations over the saline land of the western Songnen Plain (SSL), Northeastern China, are circumstantially higher than those from the northwestern Chinese deserts. These concentrations are sensitive to the surface soil conditions and wind velocity on the ground. The dust samples collected during dust storm events on the SSL contain abundant Na, Mg, Al, K, Ca, Fe and Ti, as well as toxic elements such as Cu, V, Zn and Ba. Individual particle analysis reveals that fine saline particles (< 10 μm in diameter) on the saline land, consisting largely of carbonate, halite and sulfate together with lithogenic minerals such as SiO2 and aluminosilicate, are eventually uplifted during the interval from spring to autumn. The predominantly fine saline particles uplifted from the SSL are likely transported eastward by the winter monsoon circulation and westerlies. Recent degradation of saline lands in Northeastern China would not only increase the frequency of dust storm events in the downwind area, but also might change the chemical composition of the Asian dust emissions.  相似文献   

15.
2017年春季华北地区一次典型沙尘重污染天气过程研究   总被引:1,自引:0,他引:1  
结合空气质量监测站小时监测数据、NECP资料、卫星遥感资料,分析了2017年5月3—5日华北地区一次典型沙尘重污染天气过程.结果表明,此次重污染过程主要由前期的浮尘和后期的扬沙天气造成.前期,蒙古气旋强烈发展将沙尘源地的沙尘抽吸到空中并在偏西风作用下,长距离传输到华北地区沉降,造成大范围浮尘天气,多个城市出现严重污染,PM10浓度增高显著.后期,随着高空横槽转竖并东移,受强冷锋影响,京津等地出现大风扬沙天气,大风过后,空气质量转好,PM10浓度降低至较低水平.起沙源地高空辐散、近地面辐合产生强烈的上升运动将沙尘带到空中并向东传输至华北上空,近地面处于弱辐散场,高空的沙尘缓慢下沉,形成了浮尘天气;高空槽东移,高空辐合,近地面辐散,700 hPa至近地面为强烈下沉运动,是形成此次扬沙天气的主要原因.结合天气形势分析和特征量诊断,给出了华北地区此次浮尘和扬沙天气的天气学概念模型.  相似文献   

16.
通过对四子王旗2008年和2009年3-5月份大气TSP浓度的测定,结合同期主要气象因子数据,依据国家规定的大气中TSP含量的标准和国家环境空气质量标准,对四子王旗的沙尘天气进行分类,并对其强度等级进行划分。评价结果表明:在2008年3-5月份中,发生了5次浮尘天气,2次扬沙天气,其中在2008年5月26日TSP浓度值为3.058mg/m3,达到扬沙天气等级。在2009年3-5月份,发生1次扬沙天气,TSP浓度值为3.369 mg/m3;四子王旗大气中TSP浓度含量符合国家环境空气质量二级标准;大气中TSP浓度与风速、环境温度呈正相关,与降雨量、大气压呈负相关。  相似文献   

17.
基于1969~2018年再分析气象资料,运用拉格朗日混合单粒子轨道(HYSPLIT)模型,计算了以咸海为中心未来7d的逐日气团轨迹,采用核密度分析法,绘制了5个层次(0~0.5,0.5~1,1~1.5,1.5~2,2~5km·agl)的气团轨迹密度图,分析了咸海干涸湖床粉尘扩散的时空变异.结果显示,粉尘潜在扩散具有季节分异.春、冬季粉尘扩散范围与密度最大,沿东北方向扩散比例分别占61%、35%,最远可达亚洲东部地区,其次是秋季;夏季粉尘扩散以0.5km为界限表现明显的高度差异.随着高度的增加,粉尘潜在扩散的密度逐渐降低.受地形与天气系统的影响,春、夏粉尘扩散呈现向东北,西南方向扩散趋势,秋、冬呈现沿东北方向扩散趋势.有利的天气条件下,咸海干涸湖床粉尘可远距离输送:在近源区沉降,影响乌兹别克斯坦及周边国家,在山区沉降,则可能加速天山雪冰融化.  相似文献   

18.
青藏高原地区TSP分布特征及影响因素分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用大流量采样器采集了2002年11月~2009年8月的瓦里关山地区TSP样品,通过对数据的日、月、年和季节及后向轨迹等方法的分析处理,揭示了瓦里关山地区TSP基本特征及影响因素: 2003~2008年TSP质量浓度多年均值为0.076mg/m3,呈下降趋势.TSP质量浓度的月际变化特征明显,从秋初开始逐步增大,至春季的4月出现峰值(多年平均值为0.195mg/m3),在5~8月的变化中,TSP质量浓度是逐渐下降,9月份达到浓度的最低值(多年平均值为0.029mg/m3);多年平均值在1~4月均超过国家标准环境空气质量一级标准.季节变化:春季最高,其次是冬季和秋季,夏季最低,四季的TSP平均质量浓度分别为0.148,0.091,0.037,0.035mg/m3,夏季呈下降趋势,其余季节呈上升趋势.TSP质量浓度明显受到局地气象因子降水量、温度、相对湿度、气压和风的控制.降雨量越小、温度越低、相对湿度越小、风速越小,大气TSP浓度越高,反之越低.春季背景大气TSP的质量浓度平均0.12mg/m3,大风天气为0.22mg/m3,浮尘天气为0.329mg/m3,扬沙天气0.382mg/m3,沙尘暴0.874mg/m3,分别为背景大气的1.8、2.7、3.2和7.3倍,雨雪的清除效率分别为33.9%和26.7%.气象后向轨迹模型分析瓦里关山地区沙尘暴的沙源地来源于新疆北部、甘肃西北部、内蒙古中西部及本省西北部的柴达木盆地.TSP质量浓度远低于城市和区域本底站,代表了全球大陆尺度的环境,冬春季多风沙是造成TSP质量浓度较高的主要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号