首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
为探明厌氧氨氧化反应器中微生物群落随时间变化的动态演替过程,该研究开展了微生物脱氮性能及微生物群落结构沿程变化分析。结果表明:(1)厌氧氨氧化反应器出水的优势菌群发生了较大程度改变,其中,厚壁菌门和放线菌门丰度变化最大,分别由小于1%增至23.4%和4.07%;(2)反应器沿程的脱氮能力呈上升趋势,NH_4~+-N去除率由74.3%增至79.3%,NO_2~--N去除率由84.9%增至88.4%;(3)厌氧氨氧化菌沿程相对丰度由10.1%逐渐减少至1.5%;厌氧消化菌和反硝化菌沿程丰度有明显的增加,分别由11.28%和22.12%增至23.13%和36.55%;(4)通过冗长分析研究反应器中的微生物群落结构与环境因子的相关性,表明NO_2~--N和NH_4~+-N与Bacilli正相关性最强,与Planctomycetacia负相关性影响最高。可从Planctomycetacia和Bacilli的共生关系调控对微生物菌群进行优化,为工程化应用提供有力的数据支撑。  相似文献   

2.
三段式硝化型生物接触氧化反应器的启动及特性   总被引:1,自引:0,他引:1  
采用实际生活污水,研究了三段式串联的硝化型生物接触氧化反应器的挂膜启动及各段的硝化特性.试验结果表明:利用中间沉淀池出水作为生物接触氧化反应器的进水进行自然挂膜,在无需投加接种污泥的情况下,20d挂膜成熟,NH4+-N的去除率达到98%以上.反应器中随着沿程推流,三段的生物量和生物膜厚度逐渐降低,最大的生物量和生物膜厚度分别为1271.25mg/L和119.45μm.分析各段的硝化特性,发现三段在低温15℃条件下仍具有较高的比硝化速率,并且在同一温度下(15,23,32℃),第2、3段的比硝化速率均大于第1段.针对上述现象,根据比耗氧速率SOUR粗略估计了AOB和NOB在各段中的相对比例.3段AOB的百分比分别为(25.64+4.89)%, (34.59+5.02)%, (42.50+1.57)%,而NOB的百分比为(23.52+3.35)%, (39.65+4.26)%, (40.69+2.19)%. 此外,系统运行125d的FISH结果表明,3段的微生物菌群分布确实存在差异.与第1段相比,后2段的AOB和NOB更容易成为优势菌.  相似文献   

3.
以稻秆为固体碳源处理分散养猪冲洗水的试验研究   总被引:1,自引:0,他引:1  
针对分散养猪废水经厌氧和人工湿地处理后存在C/N低的问题,以廉价的稻秆作为固体碳源和生物膜载体,研究反应器启动阶段运行性能、水力负荷的影响以及污染物沿程去除特性.结果表明NO3--N主要在反应器上部稻秆填充层被去除,去除率超过95%,且无明显NO2--N积累,反硝化速率为0.052mg/(g·h).稻秆本身会浸出释放有机物和氮(主要为NH4+-N),导致运行前期出水COD和NH4+-N高于进水,但仍远低于《畜禽养殖业污染物排放标准》(GB18596-2001)的排放限值,40d后COD逐步降至40mg/L左右.COD和NO3--N可在反应器下部的砖渣填充层被进一步去除.  相似文献   

4.
针对低C/N废水的特性,开发了新型后置反硝化反应器并探究了新型后置反硝化反应器脱氮性能,典型周期营养盐变化及关键生物脱氮酶活性。结果表明当C/N为4和12时,新型后置反硝化反应器的总氮去除效率分别为78%和82%。在处置低C/N废水时,新型后置反硝化反应器展现出较强的脱氮效率。机理研究分析表明新型后置反硝化过程产物NO_2~--N的最大含量为3.1 mg/L,显著小于传统反应器中5.6 mg/L,此外,生物脱氮关键酶氨单加氧酶(AMO)和硝酸盐还原酶(NAR)的活性显著高于传统反应器。  相似文献   

5.
基于CANON工艺的新型HABR反应器生物脱氮性能研究   总被引:2,自引:1,他引:1  
鲍林林  陈婉秋 《环境科学》2016,37(7):2639-2645
采用新型复合式折流板反应器(HABR)启动及运行全程自养脱氮(CANON)工艺.通过缩短水力停留时间(HRT)的方式提高进水总氮负荷启动反应器,反应器运行成功后,考察反应器沿程氮素、电导率、p H值及MLSS的变化规律,并对反应器内微生物种群形态结构及空间分布进行分析.结果表明,当进水NH_4~+-N平均浓度为40 mg·L~(-1)时,经过89 d的连续运行,新型HABR反应器实现了快速启动,并能稳定运行至187 d,稳定运行期出水NH_4~+-N和TN浓度分别稳定在2 mg·L~(-1)和10 mg·L~(-1)以下,去除率分别达到96%和83%以上,NRR达到0.15 kg·(m~3·d)~(-1).稳定运行阶段,NH_4~+-N与TN浓度在反应器沿程逐渐降低,NO-2-N和NO-3-N的生成量一直维持在较低浓度.第1个单元格脱氮效率最高,通过SEM和FISH分析表明,在第1个单元格中存在丰富的功能菌种亚硝化菌(AOB)和厌氧氨氧化菌(An AOB).  相似文献   

6.
人工湿地微生物硝化和反硝化强度对比研究   总被引:31,自引:0,他引:31  
通过对表面流和潜流人工湿地中不同填料层的微生物硝化和反硝化强度进行对比研究,探讨了人工湿地脱氮过程中硝化反硝化作用的变化,从微生物角度分析了人工湿地脱氮效果的差别.研究结果表明,人工湿地系统可以同时进行硝化和反硝化作用.表面流湿地硝化强度高于潜流湿地,2个系统中的硝化强度具有较明显的分层现象,上层硝化强度高于下层.2个系统中沿程硝化强度呈递减趋势,硝化强度反映氨氮去除率的大小,表面流湿地氨氮的去除率高于芦苇潜流湿地30%~40%.反硝化强度比较结果表明,潜流湿地上层土壤填料的反硝化强度最高,砾石填料反硝化强度最低,表面流湿地反硝化强度居中,2个系统反硝化强度上下分层不明显,沿程基本保持不变.  相似文献   

7.
以Monod模型为基准,推导多菌种生物膜内各菌种生物量的推定模型.以东深供水原水生物预处理工程为研究对象,对生物填料进行静态、批量实验,推算生物膜内亚硝化菌(AOB)和硝化菌(NOB)在生物池内的沿程分布规律及其基质限制条件;进行生物膜内AOB和NOB的培养计数实验及反应器系统出水模拟,验证生物量推定结果.结果表明:多菌种生物膜内AOB和NOB生物量的动力学推定,方法简单、可行;生物膜内AOB和NOB的活性生物量沿池长均呈两头低中间高的特殊分布;膜内AOB和NOB的活性生物量分别占相应总生物量的68.2%~74.2%和25.0%~29.9%;以这些活性的AOB和NOB生物量推定结果进行反应器系统出水模拟效果相当理想.  相似文献   

8.
污水管网中无机氮类营养盐迁变规律   总被引:1,自引:0,他引:1  
金鹏康  焦丁  任武昂 《环境科学》2015,36(10):3730-3737
以一套长1 200 m的城市污水模拟管网为对象,采用人工配水方式,研究了管网中含氮化合物的变化情况,分析评价了沿程氮类营养盐的迁变转化特性.结果表明,以氯化铵为氮源基质,管网微生物将其同化合成生命所需的物质以进行细胞增殖.游离氨基酸、结合氨基酸、核酸是代谢产生的主要含氮有机化合物,其中氨基酸占溶解性有机氮(DON)的绝大多数.同时利用三维荧光光谱、尺寸排阻色谱技术对水中有机物的荧光特性及相对分子质量分布的表征结果显示,污水中有机物的特征荧光峰有所增多,主要以类蛋白、类微生物代谢产物为主,且荧光强度随管网沿程逐渐增强;水中的小分子营养盐在微生物的同化作用下转化为复杂的大分子有机物.  相似文献   

9.
移动床生物膜反应器技术研究现状与进展   总被引:12,自引:0,他引:12  
移动床生物膜反应器的特性、设计原理和结构 ,综述了移动床生物膜反应器在含碳有机物去除、硝化与反硝化、除磷和反应动力学等方面的最新研究进展以及实际应用 ,指出移动床生物膜反应器是符合我国国情的新型生物膜处理技术 ,应该大力推广这种技术的普及和应用。  相似文献   

10.
摘要:以野外水平潜流芦苇砾石床人工湿地研究了湿地对微污染河道水的长期动态净化特性。2a多的运行结果表明,潜流湿地对污染物的去除性能存在波动、稳定过程。潜流湿地降解有机物和脱氮性能与植物生长和季节变化相关,其中植物生长和季节变化对湿地脱氮效能的影响大于对湿地去除有机物的影响。潜流湿地降解有机物的主要场所随运行时间沿程推移,启动期主要在湿地前部完成,稳定运行期主要在湿地的前、中部完成。湿地对有机物的去除率,在6.10%~37.83%之间变化。湿地运行期间,沿程水样C/N值基本大于5,碳源供应较充足。潜流湿地启动期TN平均去除率为15.51%,稳定运行期TN平均去除率为8.61%,低于启动期,整个运行期间湿地TN去除率不足40%。潜流湿地中硝化与反硝化反应在中部达到动态平衡,TN去除效率最高。稳定运行期间潜流湿地的前、中部耗氧强度最大,后部下层有明显硝化反应发生。潜流湿地对有机物降解、硝化与反硝化反应、TN去除具有沿程同步性。试验还初步发现,在植物生长旺盛的春夏季根系分泌的低分子有机酸对化能自养型硝化细菌可能有较大抑制作用,可能是影响脱氮效率提高的一个因素。  相似文献   

11.
为进一步充分利用原水中碳源,实现生活污水与富含硝酸盐的工业废水同步脱氮,采用2个SBR和1个UASB串联,处理低C/N生活污水和硝酸盐废水,分别启动内源反硝化反应器(ED-SBR)、半短程硝化反应器(PN-SBR)和厌氧氨氧化反应器(AMX-UASB),考察各反应器处理性能,并探讨生活污水与硝酸盐废水同步脱氮的可行性....  相似文献   

12.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

13.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

14.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

15.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

16.
郑照明  李军  马静  杜佳  赵白航 《中国环境科学》2016,36(10):2957-2963
通过批试实验研究了氨氮浓度对SNAD生物膜厌氧氨氧化性能的影响.SNAD生物膜反应器以生活污水为进水.进水NH4+-N和COD浓度平均值分别为70mg/L和180mg/L,出水NH4+-N,NO2--N,NO3--N和COD浓度平均值分别为2mg/L,2mg/L,7mg/L和50mg/L.SNAD生物膜具有良好的厌氧氨氧化活性.初始NH4+-N和NO2--N浓度都为70mg/L时,厌氧氨氧化批试NH4+-N、NO2--N和TIN去除速率分别为0.121kg N/(kg VSS·d),0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).采用Haldane模型可以很好的拟合氨氮浓度对厌氧氨氧化活性的影响.在高FA和低FA工况下氨氮浓度对厌氧氨氧化活性的抑制动力学常数相差不大.M1(FA浓度为0.7~20.4mg/L)和M2(FA浓度为6.3~190.5mg/L)的最大NO2--N理论去除速率rmax分别为0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半饱和常数Ks分别为9.5mg/L和6.1mg/L,氨氮自身抑制常数KI分别为422mg/L和597mg/L.氨氮(而不是游离氨)对SNAD生物膜的厌氧氨氧化活性起主要抑制作用.  相似文献   

17.
采用包埋固定化技术制备了包埋硫铁生物填料(ESI Filler),基于升流式自养反硝化反应器开展动态实验研究,通过改变水力停留时间(HRT)、pH值、溶解氧(DO)等运行条件,探究ESI Filler反应器的脱氮效果及微生物群落结构组成。结果表明,当进水硝酸盐氮(NO3--N)浓度为30mg/L,HRT为10h时,NO3--N去除率不断上升至99.80%。当HRT缩短为2.5h时,NO3--N去除率降至61.35%。ESI Filler反应器对pH值和DO的改变具有较高的稳定性,NO3--N平去除率可维持在82.5%以上。但对低温的耐受性较差,当温度从35℃降低至15℃时,NO3--N平均去除率由90.12%降低至68.80%。运行164d后,球体未出现破裂散落的现象,表现出较长的使用寿命。通过扫描电镜发现,填料表面疏松多孔,附着大量杆状细菌,已成为微生物的良好载体。高通量测序结果表明,包埋颗粒中优势菌属为典型的自养反硝化功能菌Thiobacillus,丰度为80.79%。  相似文献   

18.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

19.
在稳定运行的包埋厌氧氨氧化反应器的基础上,经过94d的启动成功耦合部分反硝化,部分反硝化NO2--N积累率高达63.5%,与此同时NO3--N去除率稳定为98.4%.确定了耦合反应最佳COD/NO3--N比值范围为2.3~2.7.将pH值提升至8.0,8.5后发现,耦合性能下降,这与之前很多报道的结果不同.在耦合反应器的基础上添加PCL(聚己内酯)固体碳源进一步成功耦合全程反硝化,使得厌氧氨氧化所产生的NO3--N能够得到全部去除,TN去除率也由原来的79.4%提升至88.3%,同时发现大量反硝化生物膜附着生长于PCL颗粒上.  相似文献   

20.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号