首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Land use strongly influences soil properties and unsuitable practices lead to degradation of soil and environmental quality. The aim of this study was to assess the impact of different land uses on some chemical properties of soils developed from Pliocene clays, within hilly environments of central and southern Italy. The areas investigated are located in Vicarello di Volterra (Pisa, Tuscany), S. Quirico d’Orcia (Siena, Tuscany) and Soveria Simeri (Catanzaro, Calabria). Within each area different land uses were compared, including a natural ecosystem (Mediterranean bush), a perennial grass or pasture and an intensive crop (wheat, as monoculture or in rotation). The soils were sampled at 0.0–0.1, 0.1–0.2 and 0.2–0.4 m depth and analysed for particle size, pH, bulk density, cation exchange capacity and exchangeable cations, total organic carbon (TOC) and humified carbon (HC) concentrations, organic carbon stock and total N. The stratification ratio of soil organic carbon was calculated to characterize soil organic carbon distribution with depth. At all sites, soil under Mediterranean bush contained the largest amounts of TOC (as both concentration and stock), HC, total N and exchangeable K, together with the highest cation exchange capacity and the lowest pH values. The decrease in soil OC stock with land use change from natural to agricultural ecosystem was 65–85% to 0.1 m depth, 55–82% to 0.2 m depth and 44–76% to 0.4 m depth, with the lowest decrements for perennial grass from S. Quirico and the highest decrement for continuous wheat from Soveria Simeri. Continuous wheat cropping, based on conventional tillage, proved to be the least sustainable land use. At Soveria Simeri, the organic carbon content under pasture was not significantly larger than under wheat cultivation, probably because of grazing mismanagement; however, organic carbon under pasture was more humified. At S. Quirico, the perennial grass resulted in a significant increase in soil organic carbon at the soil surface relative to the wheat cultivation, while at Vicarello no differences were observed between alfalfa/wheat rotation and perennial grass. Our results lead to the questioning of sustainability of intensive cereal farming and uncontrolled grazing in the considered environments, emphasizing the need for greater attention to conservative land managements.  相似文献   

2.
The current interest in characterizing, predicting and managing soil C dynamics has focused attention on making estimates of C inputs to soil more accurate and precise. Net primary productivity (NPP) provides the inputs of carbon (C) in ecosystems and determines the amount of photosynthetically fixed C that can potentially be sequestered in soil organic matter. We present a method for estimating NPP and annual C inputs to soil for some common Canadian agroecosystems, using a series of plant C allocation coefficients for each crop type across the country. The root-derived C in these coefficients was estimated by reviewing studies reporting information on plant shoot-to-root (S:R) ratios (n = 168). Mean S:R ratios for annual crops were highest for small-grain cereals (7.4), followed by corn (5.6) and soybeans (5.2), and lowest for forages (1.6). The review also showed considerable uncertainty (coefficient of variation for S:R ratios of ∼50% for annual crops and ∼75% for perennial forages) in estimating below-ground NPP (BNPP) in agroecosystems; uncertainty was similar to that for Canadian boreal forests. The BNPP (including extra-root C) was lower for annual crops (∼20% of NPP) than for perennial forages (∼50%). The latter was similar to estimates for relative below-ground C allocation in other Canadian natural ecosystems such as mixed grasslands and forests. The proposed method is easy to use, specific for particular crops, management practices, and driven by agronomic yields. It can be readily up-dated with new experimental results and measurements of parameters used to quantify the accumulation and distribution of photosynthetically fixed C in different types of crops.  相似文献   

3.
This study discusses soil fertility under perennial cash crop farming (para rubber, Hevea brasiliensis; black pepper, Piper nigrum; oil palm, Elaeis guineensis) conducted by local farmers and an oil palm estate in an upland area of Sarawak, Malaysia, in comparison with the surrounding secondary forests. In the farmlands of the local farmers, rubber farming was conducted without fertilizer application, while 2–5 t ha?1 of NPK compounds were applied annually on pepper farms. Soils under rubber farming were acidic with poor nutrient contents, resembling soils in secondary forests. In pepper farms, soils were less acidic and showed high nutrient contents, especially with respect to available P and exchangeable Ca. This trend became stronger with increasing farming duration. Fertilizers applied around pepper vines appeared to migrate and spread across the fields. Bulk density and hardness of surface soils were higher in pepper farms than in secondary forests, indicating soil compaction due to field works. In the oil palm estate, annual fertilizer application rates were moderate at 0.4–0.8 t ha?1 of NPK compound fertilizers. However, the soil properties in the oil palm estate were similar to those of the small-scale pepper farms. Close to the bases of the palms where fertilizers usually are applied, the contents of exchangeable Ca and available P were high. Nutrient uptake by the dense root systems of the palms seemed to prevent excessive loss of nutrients through leaching. Loss of soil organic matter and deterioration of soil physical properties were brought about by terrace bench construction, but the soils seemed to recover to some extent over time. In conclusion, technologies such as intercropping and the appropriate allocation of different crops to specific locations as well as the proper selection and dosage of fertilizers should be developed and adopted to improve fertilizer efficiency and prevent water pollution due to fertilizer wash-off from farmlands.  相似文献   

4.
Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical and challenging step toward improving our understanding of the dynamics of C sources and sinks over large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System (GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit to the state scale based upon major land use types at annual step. Results from this study indicate that soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha?1 yr?1. This was likely caused by the installation of a massive drainage system which led to the release of SOC from deep soil layers previously protected under poor drainage conditions. The annual crop rotation was another major force driving SOC variation and resulted in spatial variability of annual budgets in all croplands. Annual rate of change of SOC stocks in all land types depended significantly on the baseline SOC levels; soils with higher SOC levels tended to be C sources, and those with lower levels tended to be C sinks. Management practices (e.g., conservation tillage and residue management practices) slowed down the C emissions from Iowa soils, but could not reverse the general trend of net SOC loss in view of the entire state due mainly to a high level of baseline SOC stocks.  相似文献   

5.
An impact assessment of current upland cropping systems in Haiti was carried out using a combined experimental and agronomic survey approach on fields that were chosen as being representative of the diversity of land use practices and intensities. These cropping systems were mostly developed on ferralsols with differing degrees of weathering owing to the varying depths to the limestone bedrock. Three soil types for which the CEC of the mineral fraction was less than 3, 4–7, or 11–18 cmol(+) kg−1 were distinguished. The study shows that apart from phosphorus, soil cation availability (K, Mg) is the most limiting factor for a successful bean crop. With the insertion of a fertilized cabbage crop into the rotation, the soil bioavailable P at the sowing of the bean–maize intercrop (BMI) did not significantly increase, whereas the exchangeable K content of the soils increased from 0.22 to 0.38 and led to a significant increase in the bean yield from 654 to 1079 kg ha−1. It is clear that the trend of the cropping systems towards a shorter fallow period, increasing frequency of the BMI and introduction of N–P–K fertilizers, may all increase crop production in the short term. However, these changes are unlikely to lead to sustained benefits. One of the potential risks is the soil Mg depletion due to K fertilization as revealed by a microlysimeter experiment. Another risk is the increased proportion of plants with bean root diseases, due to the shortening of the BMI rotation interval. The proportion of plants with bean root diseases increased from 7 to 22% in 1989 and from 10 to 39% in 1990, when the bean rotation interval was reduced from 3 to 1 years. Another risk is the spatial spread of fall armyworm (Spodoptera frugiperda) from the plots covered with residues of a preceding maize crop, to the neighboring plots recently sown with maize. Future research should therefore focus on optimizing the K:Mg ratio of fertilizer, breeding bean varieties resistant to Fusarium disease, diversifying the range of crops cultivated, and management of the maize residues. The evolution of the cropping systems in the last 10 years is somewhat consistent with the diagnosis made about 15 years earlier.  相似文献   

6.
Arable land soils generally have lower organic carbon (C) levels than soils under native vegetation; increasing the C stocks through improved management is suggested as an effective means to sequester CO2 from the atmosphere. China's arable lands, accounting for 13% of the world's total, play an important role in soil C sequestration, but their potential to enhance C sequestration has not yet been quantitatively assessed. The C sequestration by agricultural soils is affected by many environmental factors (such as climate and soil conditions), biological processes (crop C fixation, decomposition and transformation), and crop and soil management (e.g. tillage and manure application). Estimation of the C sequestration potential requires the quantification of the combined effects of these factors and processes. In this study, we used a coupled remote sensing- and process-based ecosystem model to estimate the potential for C sequestration in agricultural soils of China and evaluated the sustainability of soil C uptake under different soil management options. The results show that practicing no-tillage on 50% of the arable lands and returning 50% of the crop residue to soils would lead to an annual soil C sequestration of 32.5 Tg C, which accounts for about 4% of China's current annual C emission. Soil C sequestration with improved soil management is highly time-dependent; the effect lasted for only 20–80 years. Generally, practicing no-tillage causes higher rate and longer sustainability of soil C sequestration than only increasing crop residue into soils. The potential for soil C sequestration varied greatly among different regions due to the differences in climate, soil conditions and crop productivity.  相似文献   

7.
RothC and Century are two of the most widely used soil organic matter (SOM) models. However there are few examples of specific parameterisation of these models for environmental conditions in East Africa. The aim of this study was therefore, to evaluate the ability of RothC and the Century to estimate changes in soil organic carbon (SOC) resulting from varying land use/management practices for the climate and soil conditions found in Kenya. The study used climate, soils and crop data from a long term experiment (1976–2001) carried out at The Kabete site at The Kenya National Agricultural Research Laboratories (NARL, located in a semi-humid region) and data from a 13 year experiment carried out in Machang’a (Embu District, located in a semi-arid region). The NARL experiment included various fertiliser (0, 60 and 120 kg of N and P2O5 ha−1), farmyard manure (FYM—5 and 10 t ha−1) and plant residue treatments, in a variety of combinations. The Machang’a experiment involved a fertiliser (51 kg N ha−1) and a FYM (0, 5 and 10 t ha−1) treatment with both monocropping and intercropping. At Kabete both models showed a fair to good fit to measured data, although Century simulations for treatments with high levels of FYM were better than those without. At the Machang’a site with monocrops, both models showed a fair to good fit to measured data for all treatments. However, the fit of both models (especially RothC) to measured data for intercropping treatments at Machang’a was much poorer. Further model development for intercrop systems is recommended. Both models can be useful tools in soil C predictions, provided time series of measured soil C and crop production data are available for validating model performance against local or regional agricultural crops.  相似文献   

8.
Carbon (C) input from tree prunings and crop residues help to maintain the soil organic C pool in tropical agroforestry systems. This study quantified the C stock of tree roots and C input from tree prunings and crop residues in 19-, 10- and 4-year-old Erythrina poeppigiana and Gliricidia sepium alley cropping systems in Costa Rica. The 19-year-old alley cropping system was studied at two fertilizer levels (tree prunings only [−N], and tree prunings plus chicken manure [+N]), and was compared to a sole crop. The 10- and 4-year-old systems were also studied at two fertilizer levels (tree prunings only [−A], and tree prunings plus Arachis pintoi as a groundcover [+A]), and compared to a sole crop. In the 19-year-old system C input from G. sepium was significantly greater (P < 0.05) compared to E. peoppigiana, but for both tree species there was no significant difference between +N and −N treatments. For the 10- and 4-year-old systems, E. poeppigiana had a significantly higher (P < 0.05) C input from prunings compared to G. sepium, and the presence of A. pintoi increased pruning biomass productivity significantly in these systems. Tree roots of 10- (4527 kg C ha−1) and 4-year-old (3667 kg C ha−1) E. poeppigiana represented 16 and 28% of the total C allocation. Carbon input from maize (Zea mays L.) and bean (Phaseolus vulgaris L.) residues were not significantly different (P < 0.05) between alley crops and sole crops in the 19-year-old system per unit of cropped land. In this system, +N treatments had a significantly greater (P < 0.05) C input from bean residue than in −N treatments, but no such trend was observed for maize residues. Carbon input from maize and bean residues were significantly greater (P < 0.05) in alley crops than the sole crops, but not significantly different (P < 0.05) between +A and −A treatments in the younger system. The greatest input of organic material occurred in the 19-year-old alley crop followed by the 10- and 4-year-old alley crops. This additional input of organic material in alley crops, mostly derived from tree prunings, will help to maintain or increase the level of the soil organic carbon pool.  相似文献   

9.
Nitrous oxide (N2O) emissions from agriculture are currently estimated from N inputs using emission factors, and little is known about the importance of regional or management-related differences. This paper summarizes the results of a study in which N2O emission rates were recorded on 15–26 occasions during a 12-month period in organic and conventional dairy crop rotations in five European countries (Austria, Denmark, Finland, Italy, UK). A common methodology based on static chambers was used for N2O flux measurements, and N2O data were compiled together with information about N inputs (from fertilizers, N2 fixation, atmospheric deposition and excretal returns), crop rotations and soil properties. Organic rotations received only manure as N fertilizer, while manure accounted for 0–100% of fertilizer N in conventional rotations. A linear regression model was used to examine effects of location, system and crop category on N2O emissions, while a second model examined effects of soil properties. Nitrous oxide emissions were higher from conventional than from organic crop rotations except in Austria and, according to the statistical analysis, the differences between locations and crop categories were significant. Ammonium was significantly related to N2O emissions, although this effect was dominated by observations from a grazing system. Despite the limited number of samplings, annual emissions were estimated by interpolation. Across the two systems and five locations there was a significant relationship between total N inputs and N2O emissions at the crop rotation level which indicated that annually 1.6 ± 0.2% (mean ± standard error) of total N inputs were lost as N2O, while there was a background emission of 1.4 ± 0.3 kg N2O-N ha−1 year−1. Although this measurement program emphasized system effects at the expense of high temporal resolution, the results indicate that N input is a significant determinant for N2O emissions from agricultural soils.  相似文献   

10.
Effects of agricultural land-use and land-use change on soil organic carbon (SOC) pools play an important role in the mitigation of the global greenhouse effect. To estimate these effects, baseline SOC data for individual regions or countries are needed. The aim of this study was to quantify current SOC stocks in Swiss agricultural soils, to identify meaningful predictors for SOC, and to estimate historical SOC losses. SOC stocks in mineral soils were estimated from combined georeferenced data for land-use, topography, and profile data (n=544) from soil surveys. Mean SOC density in the layer 0–20 cm ranged between 40.6±8.9 t ha−1 (±95% confidence interval (CI)) for arable land and 50.7±12.2 t ha−1 for favourable permanent grassland, and in the layer 0–100 cm from 62.9±15.2 t ha−1 for unfavourable grassland to 117.4±29.8 t ha−1 for temporary grasslands (leys). SOC stocks in organic soils were quantified separately for intact and cultivated peatlands using data from peatland inventories and current SOC densities calculated from average peat decay rates. Organic soils account for less than 3% of the total area but store about 28% (47.2±7.3 Mt) of the total SOC stock of 170±17 Mt. Land-use type, clay content, and altitude (serving as a climate proxy for grassland soils at higher altitudes) were identified as main SOC predictors in mineral soils. Clay content explained up to 44% of the variability in SOC concentrations in the fine earth of arable soils, but was not significantly related to SOC in grassland soils at higher altitudes. SOC concentration under permanent grassland increases linearly with altitude, but because soil depth and stone content limit carbon storage in alpine grassland soils, no relationship was found between altitude and SOC stock. A preliminary estimate suggested that about 16% of the national SOC stock has been lost historically due to peatland cultivation, urbanisation, and deforestation. It seems unlikely that future changes in agricultural practices could compensate for this historical SOC loss in Swiss agricultural soils.  相似文献   

11.
Heavy metal (HM) contaminations in the topsoil around handicraft villages with non-ferrous heavy metal recycling in the Red River Delta can impose serious threats to the subsoil as well as to the groundwater quality. This feature is very important for paddy soils due to relatively high leaching rates and the dissolution of Fe–Mn oxides under reducing conditions which can accelerate the amount of HM translocated to the subsoil and groundwater.The transport of Cu, Pb and Zn in paddy soils was simulated by numerical modeling of non-equilibrium solute transport with an adaptation of the Hydrus-1D model. For the simulation, a water layer on the soil surface was included, from which HM can infiltrate into the soil depending on the soil hydraulic properties. Sorption coefficients, obtained from batch experiments were used as input data for the simulations. Calculated leaching rates were compared with the binding forms of HM in the samples.The simulations show that leaching rates decrease in the order: Zn > Cu > Pb. This order is confirmed by the results of sequential extractions. Under constant flooded conditions at a water table of 20 cm, Cu, Pb and Zn were estimated to reach the soil depth of 1 m within 470, 495 and 370 days, respectively, emphasizing that reactive pollutants can reach groundwater in a relatively short time. A change of the water layer from 1 to 30 cm can accelerate the leaching rate of HM up to 36%. The hard pan layer was observed to induce a hysteresis in hydraulic conductivity and slow down the movement of HM. Uncertainties in modeling arise as several parameters in the simulation can be determined only with significant errors. However, Hydrus-1D is a suitable tool for simulation of the transport of HM in paddy soils.  相似文献   

12.
黑河中游边缘绿洲农田退耕还草的土壤碳、氮固存效应   总被引:4,自引:0,他引:4  
苏永中 《环境科学》2006,27(7):1312-1318
研究黑河中游边缘绿洲农田退耕种植苜蓿5a后土壤碳、氮库的变化,通过对2个土类(开垦耕种的风沙土和灰棕漠土)退耕苜蓿地和相邻农田0~5、5~10和10~20cm土层土壤有机碳(SOC)和全氮(TN)、颗粒有机碳和氮(POC、PON)储量的分析表明:开垦耕种的风沙土和灰棕漠土有极低的SOC和TN含量,退耕种植苜蓿后0~20cm SOC储量提高了22.1%~27.8%,SOC的固存率平均为0.47 Mg/(hm2·a),0~5cm表层SOC储量变化最大,提高32%~66%;TN储量0~20cm储量变化不显著,在0~5cm表层TN储量风沙土和灰棕漠土分别提高12.8%和48.1%.退耕后POC和PON较SOC和TN有更显著的变化,其分配比例增加,0~20cm土层POC和PON储量分别提高22.8%~42.7%和18.6%~57.6%,在0~5cm变化最大;在瘠薄耕地转变为多年生苜蓿地后土壤C库的增加主要是由于POC的形成量增加.SOC含量相对更低的灰棕漠土比风沙土退耕后土壤C、N的增加更为明显.  相似文献   

13.
The Global Environment Facility co-financed Soil Organic Carbon (GEFSOC) Project developed a comprehensive modelling system for predicting soil organic carbon (SOC) stocks and changes over time. This research is an effort to predict SOC stocks and changes for the Indian, Indo-Gangetic Plains (IGP), an area with a predominantly rice (Oryza sativa)–wheat (Triticum aestivum) cropping system, using the GEFSOC Modelling System and to compare output with stocks generated using mapping approaches based on soil survey data. The GEFSOC Modelling System predicts an estimated SOC stock for the IGP, India of 1.27, 1.32 and 1.27 Pg for 1990, 2000 and 2030, respectively, in the top 20 cm of soil. The SOC stock using a mapping approach based on soil survey data was 0.66 and 0.88 Pg for 1980 and 2000, respectively. The SOC stock estimated using the GEFSOC Modelling System is higher than the stock estimated using the mapping approach. This is due to the fact that while the GEFSOC System accounts for variation in crop input data (crop management), the soil mapping approach only considers regional variation in soil texture and wetness. The trend of overall change in the modelled SOC stock estimates shows that the IGP, India may have reached an equilibrium following 30–40 years of the Green Revolution. This can be seen in the SOC stock change rates. Various different estimation methods show SOC stocks of 0.57–1.44 Pg C for the study area. The trend of overall change in C stock assessed from the soil survey data indicates that the soils of the IGP, India may store a projected 1.1 Pg of C in 2030.  相似文献   

14.
In tropical mountainous regions of South East Asia, intensive cultivation of annual crops on steep slopes makes the area prone to erosion resulting in decreasing soil fertility. Sediment deposition in the valleys, however, can enhance soil fertility, depending on the quality of the sediments, and influence crop productivity. The aim of the study was to assess (i) the spatio-temporal variation in grain yield along two rice terrace cascades in the uplands of northern Viet Nam, (ii) possible linkage of sediment deposition with the observed variation in grain yield, and (iii) whether spatial variation in soil water or nitrogen availability influenced the obtained yields masking the effect of inherent soil fertility using carbon isotope (13C) discrimination and 15N natural abundance techniques. In order to evaluate the impact of seasonal conditions, fertilizer use and sediment quality on rice performance, 15N and 13C stable isotope compositions of rice leaves and grains taken after harvest were examined and combined with soil fertility information and rice performance using multivariate statistics. The observed grain yields for the non-fertilized fields, averaged over both cascades, accounted for 4.0 ± 1.4 Mg ha?1 and 6.6 ± 2.5 Mg ha?1 in the spring and summer crop, respectively, while for the fertilized fields, grain yields of 6.5 ± 2.1 Mg ha?1 and 6.9 ± 2.1 Mg ha?1 were obtained. In general, the spatial variation of rice grain yield was strongly and significantly linked to sediment induced soil fertility and textural changes, such as soil organic carbon (r 0.34/0.77 for Cascades 1 and 2, respectively) and sand fraction (r ?0.88/?0.34). However, the observed seasonal alteration in topsoil quality, due to sediment deposition over two cropping cycles, was not sufficient to fully account for spatial variability in rice productivity. Spatial variability in soil water availability, assessed through 13C discrimination, was mainly present in the spring crop and was linearly related to the distance from the irrigation channel, and overshadowed in Cascade 2 the expected yield trends based on sediment deposition. Although δ15N signatures in plants indicated sufficient N uptake, grain yields were not found to be always significantly influenced by fertilizer application. These results showed the importance of integrating sediment enrichment in paddy fields within soil fertility analysis. Furthermore, where the effect of inherent soil fertility on rice productivity is masked by soil water or nitrogen availability, the use of 13C and 15N stable isotopes and its integration with conventional techniques showed potential to enhance the understanding of the influence of erosion – sedimentation and nutrient fluxes on crop productivity, at toposequence level.  相似文献   

15.
The largest areas of acid sulphate (AS) soils in Europe are located in Finland, where 67,000–130,000 ha of AS soils are in agricultural use. In addition to their acidifying effects on waters, AS soils might be a significant source of greenhouse gases. In this pilot research, carbon and nitrogen content and microbial activity were studied in an AS and a non-AS soil. Large carbon and nitrogen stocks (110 Mg Corg ha?1 and 15 Mg Ntot ha?1) as well as high substrate induced respiration (33 μg CO2–C g?1h?1) were found in the C horizons of the AS soil but not in the non-AS soil. High microbial activity in these horizons of the AS soil was further confirmed by the measurement of dehydrogenase activity, basal respiration, the numbers of culturable bacterial cells, and the ratio of culturable to total numbers of cells. Still, the denitrifying enzyme activity was very low in the anaerobic horizons of the AS soil, indicating the prevalence of microbes other than denitrifiers. We suspect that the microbial community originated with the genesis of AS soil and has been supported by the large stocks of accumulated carbon and mineral nitrogen in the C horizons. If these permanently water-saturated subsoils are exposed to oxygen and their microbial activity consequently increases, large carbon and nitrogen stocks are likely to be mobilised, resulting in increased emission of greenhouse gases. Additional studies of boreal AS soils are needed to assess their potential contribution to increases in greenhouse gas fluxes at the local, regional, and global scales.  相似文献   

16.
农田是重要的陆地生态系统土壤碳库和作物生长的有机养分库.为明确气候变暖对稻麦轮作农田土壤碳库的影响,利用田间开放式增温平台,分析了增温、施肥和其交互作用对土壤有机碳和其活性组分的影响,并评估了土壤碳库管理指数的变化.结果表明,增温、施肥对土壤有机碳含量和其活性有机碳组分的影响均无显著交互作用.增温增加了土壤有机碳含量,且总有机碳(TOC)和惰性有机碳(ROC)含量差异显著.与不增温对照相比,增温处理的TOC、 ROC和活性有机碳(LOC)含量分别增加了7.72%、7.42%和10.11%.土壤微生物量碳(MBC)含量的增加(20.4%)和颗粒有机碳(POC)含量的降低(36.51%)可能是增温下土壤有机碳含量变化的主要原因.增温对土壤可溶性有机碳(DOC)含量无显著影响,但显著降低了其可溶性微生物副产物组分含量(41.89%).结果同时表明,施肥对土壤有机碳含量均无显著影响,但显著降低了活性碳组分的DOC和POC含量,增加了MBC含量.与不施肥对照相比,施肥处理的土壤DOC和POC含量分别降低了35.44%和28.33%,MBC含量增加了33.38%.此外,施肥有增加可溶性有机物中人为...  相似文献   

17.
Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha−1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha−1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha−1 at MZ12 and 7 Mg C ha−1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha−1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha−1 day−1 in sole-maize and 23 to 83 kg ha−1 day−1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.  相似文献   

18.
Earthworm and termite diversity were studied in 12 long-term agricultural field trials across the sub-humid to semi-arid tropical zones of Eastern and Western Africa. In each trial, treatments with high and low soil organic C were chosen to represent contrasts in long-term soil management effects, including tillage intensity, organic matter and nutrient management and crop rotations. For each trial, a fallow representing a relatively undisturbed reference was also sampled. Earthworm taxonomic richness decreased in the direction fallow > high-C soil > low-C soil and earthworm abundance was higher in fallow than under continuous crop production. Termite abundance was not significantly different between fallow and high and low-C treatments and termite taxonomic richness was higher in fallow soil than in the two cropping systems. We concluded that fewer species of earthworms and termites were favored under agricultural management that led to lower soil C. Results indicated that the soil disturbance induced by continuous crop production was more detrimental to earthworms than to termites, when compared to the fallow.  相似文献   

19.
Increasing dependence on off-farm inputs including, fertilizers, pesticides and energy for food and fiber production in the United States and elsewhere is of questionable sustainability resulting in environmental degradation and human health risks. The organic (no synthetic fertilizer or pesticide use), and low-input (reduced amount of synthetic fertilizer and pesticide use), farming systems are considered to be an alternative to conventional farming systems, to enhance agricultural sustainability and environmental quality. Soil N availability and leaching potential, crop yields and weeds are important factors related to agricultural sustainability and environmental quality, yet information on long-term farming system effects on these factors, especially in the organic and low-input farming systems is limited. Four farming systems: organic, low-input, conventional (synthetic fertilizer and pesticides applied at recommended rates) 4-year rotation (conv-4) and a conventional 2-year rotation (conv-2) were evaluated for soil mineral N, potentially mineralizable N (PMN), crop yields and weed biomass in irrigated processing tomatoes (Lycopersicon esculentum L.) and corn (Zea mays L.) from 1994 to 1998 in California’s Sacramento Valley. Soil mineral N levels during the cropping season varied by crop, farming system, and the amount and source of N fertilization. The organic and low-input systems showed 112 and 36% greater PMN pools than the conventional systems, respectively. However, N mineralization rates of the conventional systems were 100% greater than in the organic and 28% greater than in the low-input system. Average tomato fruit yield for the 5-year period (1994–1998) was 71.0 Mg ha−1 and average corn grain yield was 11.6 Mg ha−1 and both were not significantly different among farming systems. The organic system had a greater aboveground weed biomass at harvest compared to other systems. The lower potential risk of N leaching from lower N mineralization rates in the organic and low-input farming systems appear to improve agricultural sustainability and environmental quality while maintaining similar crop yields.  相似文献   

20.
It is widely believed that soil disturbance by tillage was a primary cause of the historical loss of soil organic carbon (SOC) in North America, and that substantial SOC sequestration can be accomplished by changing from conventional plowing to less intensive methods known as conservation tillage. This is based on experiments where changes in carbon storage have been estimated through soil sampling of tillage trials. However, sampling protocol may have biased the results. In essentially all cases where conservation tillage was found to sequester C, soils were only sampled to a depth of 30 cm or less, even though crop roots often extend much deeper. In the few studies where sampling extended deeper than 30 cm, conservation tillage has shown no consistent accrual of SOC, instead showing a difference in the distribution of SOC, with higher concentrations near the surface in conservation tillage and higher concentrations in deeper layers under conventional tillage. These contrasting results may be due to tillage-induced differences in thermal and physical conditions that affect root growth and distribution. Long-term, continuous gas exchange measurements have also been unable to detect C gain due to reduced tillage. Though there are other good reasons to use conservation tillage, evidence that it promotes C sequestration is not compelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号