首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Perfluorononanoic acid(PFNA) is a nine-carbon perfluoroalkyl acid widely used in industrial and domestic products. It is a persistent organic pollutant found in the environment as well as in the tissues of humans and wildlife. There is a concern that this chemical might be a developmental toxicant and teratogen in various ecosystems. In the present study,the toxic effects of PFNA were evaluated in zebrafish(Danio rerio) embryos. One hour post-fertilization embryos were treated with 0, 25, 50, 100, 200, 300, 350, and 400 μmol/L PFNA for 96 hr in 6-well plates. Developmental phenotypes and hatching rates were observed and recorded. Nineteen genes related to oxidative stress and lipid metabolism were examined using Quantitative RT-PCR and confirmed by whole mount in situ hybridization(WISH). Results showed that PFNA delayed the development of zebrafish embryos, reduced the hatching rate, and caused ventricular edema and malformation of the spine. In addition, the amount of reactive oxygen species in the embryo bodies increased significantly after exposure to PFNA compared with that of the control group. The Quantitative RT-PCR and WISH experiments demonstrated that m RNA expression of the lfabp and ucp2 genes increased significantly while that of sod1 and mt-nd1 decreased significantly after PFNA exposure. The m RNA expression levels of gpx1 and mt-atp6 decreased significantly in the high concentration group. However, the m RNA expression levels of both ppara and pparg did not show any significant variation after exposure. These findings suggest that PFNA affected the development of zebrafish embryos at relatively low concentrations.  相似文献   

3.
The toxicity of chlortetracycline (CTC) on maize (Zea mays L.) growth and reactive oxygen species (ROS) generation was studied. The root and shoot lengths and fresh weights of maize seedlings were inhibited by CTC treatment (p < 0.05). Root length was more sensitive than other parameters with the EC10 value of 0.064 mg/L. The spin trapping technique followed by electron paramagnetic resonance (EPR) analysis was used to quantify the ROS production. The ROS generated in maize roots after exposure to CTC was identified as hydroxyl radical (.OH). The EPR signal intensity correlated positively with the logarithm of CTC concentrations exposed (p < 0.05). The dynamic changes of malondialdehyde (MDA) contents and the antioxidative enzyme activities in maize roots were also determined. As compared to the control group, CTC was found to significantly increase MDA content. Treatment of maize roots with the.OH scavenger sodium benzoate (SB) reduced the MDA content and enhanced the antioxidative enzyme activities. The results demonstrated the harmfulness of CTC at high dose to maize in the early developmental stage, and clarified that the inducement of.OH is one of the mechanisms of CTC toxicity.  相似文献   

4.
Since a real atmospheric scenario usually represents a system involving multiple pollutants, air pollution studies typically focused on describing adverse effects associated with exposure to individual pollutants cannot reflect actual health risk. Particulate matter(PM10) and sulfur dioxide(SO2) are two major pollutants derived from coal combustion processes and co-existing in coal-smoke air pollution, but their potentially synergistic toxicity remains elusive thus far. In this study, we investigated the cytotoxic responses of PM10 and SO2, singly and in binary mixtures, using human non-small cell lung cancer A549 cells, followed by clarifying the possible mechanisms for their interaction. The results indicated that the concomitant treatment of PM10 and SO2 at low concentrations led to synergistic injury in terms of cell survival and apoptosis occurrence, while PM10 and SO2 alone at the same concentrations did not cause damage to the cells. Also, radical oxygen species(ROS) production followed by nuclear factor kappa B(NF-κB) activation was involved in the above synergistic cytotoxicity, which was confirmed by the repression of the actions by an ROS inhibitor(NAC). This implies that assessment of health risk should consider the interactions between ambient PM and gaseous copollutants.  相似文献   

5.
6.
Textile industries are important sources of toxic discharges and contribute enormously to water deterioration, while little attention has been paid to the toxicity of textile effluents in discharge regulation. Bioassays with zebrafish were employed to evaluate the toxicity of wastewater samples collected from different stages at a textile factory and sewage treatment plants (STPs). Physico-chemical parameters, acute toxicity, genotoxicity and oxidative stress biomarkers were analyzed. The wastewater samples from bleaching, rinsing and soaping of the textile factory exhibited high acute toxicity and genotoxicity. The coexisting components of dye compounds, as assistants and oxidants, seemed to cause some effect on the toxic response. After treatment employing the anoxic-oxic (A/O) process in STPs, the color and the chemical oxygen demand (COD) were reduced by 40% and 84%, respectively, falling within the criteria of the Chinese Sewage Discharge Standard. In contrast, increases in acute toxicity and genotoxicity were observed in the anaerobic tank, indicating the formation of toxic intermediates. The genotoxicity of the effluent of the STP was not significantly different from that of the influent, suggesting the wastewater treatment processes were not effective in removing the genotoxicity of the dye wastewater. Results indicated that the effluent contains pro-oxidants since the activities of glutathione (GSH), malondialdehyde (MDA), and total anti-oxidation capacity (T-AOC) were all elevated. In addition, decreases in superoxide dismutase (SOD) and glutathione-S transferase (GST) activities observed can be interpreted as a cytotoxicity sign due to an over-production of reactive oxygen species (ROS). The results of the present study suggest that the STPs were not capable of reducing the toxicity of wastewater sufficiently. Further treatment is needed to remove the potential risks posed by textile effluent to ecosystems and human health, and employing a toxicity index is necessary for discharge regulation.  相似文献   

7.
Allium cepa bioassay had been used from decades for the assessment of toxicants and their harmful effects on environment as well as human health. Magnesium oxide(MgO) particles are being utilized in different fields. However, reports on the adverse effects of MgO nanoparticles on the environment and mankind are scarce. Hence, the toxicity of MgO particles is of concern because of their increased utilization. In the current study, A. cepa was used as an indicator to assess the toxicological efficiency of MgO nano-and microparticles(NPs and MPs) at a range of exposure concentrations(12.5, 25, 50, and100 μg/m L). The toxicity was evaluated by using various bioassays on A. cepa root tip cells such as comet assay, oxidative stress and their uptake/internalization profile. Results indicated a dose dependent increase in chromosomal aberrations and decrease in mitotic index(MI) when compared to control cells and the effect was more significant for NPs than MPs(at p 0.05). Comet analysis revealed that the Deoxyribonucleic acid(DNA) damage in terms of percent tail DNA ranged from 6.8–30.1 over 12.5–100 μg/m L concentrations of MgO NPs and was found to be significant at the exposed concentrations. A significant increase in generation of hydrogen peroxide and superoxide radicals was observed in accordance with the lipid peroxidation profile in both MgO NPs and MPs treated plants when compared with control. In conclusion, this investigation revealed that MgO NPs exposure exhibited greater toxicity on A. cepa than MPs.  相似文献   

8.
The toxicity of nano-materials has received increasing attention in recent years.Nevertheless,relatively few studies have focused on their oceanic distributions and toxicities.In this study,we assessed nano-ZnO toxicity in marine organisms using the yellowstriped goby(Mugilogobius chulae).The relative differences in nano-ZnO dissolution and dispersal in seawater and fresh water were also investigated.The effects of nano-ZnO on embryonic development,deformity,hatching,mortality,and histopathology were analyzed.In addition,the effects of the Zn~(2+) concentration on M.chulae hatching and mortality were compared.The results showed that nano-ZnO had higher solubility in seawater than in fresh water.Nano-ZnO significantly inhibited hatching.By the fifth day of exposure,the LC_(50) of nano-ZnO was 45.40 mg/L,and the mortality rate spiked.Hatching inhibition and lethality were dose-dependent over a range of1–25 mg/L nano-ZnO.Zn~(2+) inhibited hatching and increased lethality,but its effects were weaker than those of nano-ZnO at the same concentrations.Nano-ZnO also induced spinal bending,oedema,hypoplasia,and other deformities in M.chulae embryos and larvae.Histopathology revealed vacuolar degeneration,hepatocyte and enterocyte enlargement,and morphological abnormalities of the vertebrae.Therefore,nano-ZnO caused malformations in M.chulae by affecting embryonic growth and development.We conclude that nano-ZnO toxicity in seawater was significantly positively correlated with the associated Zn~(2+) concentration and sedimentary behaviour.The toxicity of nano-ZnO was cumulative and showed a critical point,beyond which embryonic and developmental toxicity in marine fish was observed.  相似文献   

9.
The discharge of organic waste from the petrochemical industry into the Mercier lagoons caused major groundwater contamination. The objective of this study was to determine the immunotoxic potential of three groundwater wells at increasing distance from the incinerator dumping site (1.17, 2.74 and 5.40 km). Rainbow Trout were exposed to increasing concentrations of water from three groundwater wells for 14 days. Immunocompetence was characterized by phagocytosis, mitogen-stimulated proliferation of lymphocytes, cell cycle analysis and apoptosis. A significant increase in innate (phagocytosis) and specific immune response (B lymphocyte proliferation) was observed in trout exposed to water collected from the well at 2.74 km. However, phagocytosis activity was suppressed in groups at 1.17 and 5.40 km. The proportion of lymphocytes in S phase was significantly increased in groups at 2.74 and 5.40 kin, while lymphocytes in G0/G1 phase were decreased in all three exposure groups. Additionally, dexamethasone (DEX)-induced apoptosis of lymphocytes was significantly reduced in the group at 2.74 km, which suggests decreased lymphocyte turnover. Furthermore, the ratio of DEX- induced apoptosis/apoptosis was lower in the groups at 2.74 and 5.40 km. In summary, our experiments have shown that exposure to the mixture of organic compounds present in Mercier groundwater modulates phagocytosis and cell proliferation, disrupts the cell cycle and reduces the ratio of DEX- induced apoptosis/apoptosis. It is concluded that groundwater collected in the vicinity of an incinerator containment field could impact immunocompetence in fish.  相似文献   

10.
Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential . TO further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60 mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of Am. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2 μmol/L, complex I inhibitor) and antimycin A (0.01 μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (S μmol/L, complex Ⅱinhibitor). These results suggest that rnitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS.  相似文献   

11.
氯苯和间甲酚对斑马鱼胚胎和仔鱼联合毒理效应研究   总被引:1,自引:0,他引:1  
方法:采用斑马鱼胚胎和仔鱼发育技术,分别用不同浓度的氯苯和间甲酚混合液对斑马鱼胚胎和仔鱼进行暴露试验。结果:两种受试物联合对斑马鱼胚胎和仔鱼发育表现不同的联合毒性。0hpf染毒主要表现为:对24 h胚胎尾部延展为拮抗作用,48 h水肿、72 h孵化和畸形均为协同作用;48 h对仔鱼毒性为由相加作用向拮抗作用的转变,在24 h、72 h和96 h联合毒性均为协同作用。结论:氯苯和间甲酚联合作用对斑马鱼胚胎和仔鱼存在毒性。  相似文献   

12.
四溴双酚A对斑马鱼胚胎体内外发育的毒性效应   总被引:4,自引:1,他引:3  
四溴双酚A(TetrabromobisphenolA,TBBPA)是广泛使用的溴阻燃剂,在环境中普遍存在.采用斑马鱼胚胎体内外微环境模拟实验,研究了TBBPA对斑马鱼(Danio rerio)胚胎体内外发育的影响.结果发现,斑马鱼胚胎直接暴露在TBBPA溶液中,会造成胚胎心包囊水肿、尾部延伸不全等畸形或使胚胎死亡;当TBBPA浓度高于1.6mg·L-1时,处理斑马鱼胚胎的致死率显著升高,与对照组有极显著差异(p<0.01),且致死效应主要发生在24h内.当TBBPA浓度为6.4mg·L-1时,斑马鱼胚胎在48h内全部死亡.在TBBPA浓度大于0.4mg·L-1的各组中,24h内斑马鱼胚胎在20s内的活动频率明显降低;当胚胎直接接触TBBPA48h,表现出的主要毒性效应为胚胎心包囊水肿,但胚胎的心率没观察到异常变化.当斑马鱼胚胎发育到72h时,TBBPA引起斑马鱼胚胎毒性的主要特征是心包囊水肿和脊柱畸形.另外,TBBPA处理后斑马鱼胚胎的孵化率和生存率均显著降低,这表明斑马鱼胚胎直接暴露在TBBPA污染的环境中,会出现明显的发育障碍,主要表现为心脏功能受损和致死效应,这些毒性特征有显著的剂量-效应关系.当成年亲代斑马鱼暴露在TBBPA溶液(1.5mg·L-1)中3~7d后,子代胚胎的发育表现出明显的毒性效应,其胚胎发育到24h和72h时的致死率均呈现一定的时间-效应关系;72h时的死亡率与对照组有极显著差异,子代胚胎的孵化率降低,但没有统计学差异;但子代胚胎的致畸率却显著升高,并呈现显著差异.研究结果表明,水体中残留的TBBPA对体内外斑马鱼胚胎的发育均有直接影响,对于鱼类的生殖和发育具有潜在的危害.  相似文献   

13.
嘧菌酯作为最畅销的甲氧丙烯酸酯类杀菌剂,是防治水稻病害的常用农药,其对水生生态环境的负面效应值得重视.为研究嘧菌酯对水生生物的危害,进行多阶段(成鱼、仔鱼、胚胎)斑马鱼毒性试验,分析了嘧菌酯对鱼类的急性毒性,同时,通过6 d胚胎发育试验,研究了嘧菌酯对鱼类早期发育阶段的影响.结果表明,斑马鱼3个生命阶段对嘧菌酯的敏感性(以96 h-LC50(致死中浓度)表示)顺序为:仔鱼(0.39 mg·L~(-1))胚胎(0.61 mg·L~(-1))成鱼(1.37 mg·L~(-1)).6 d胚胎发育试验结果发现,嘧菌酯可诱导斑马鱼胚胎出现一系列不良症状,包括孵化率下降、心率异常、生长抑制和心包水肿等.0.25 mg·L~(-1)的嘧菌酯可显著促进斑马鱼胚胎自主运动和心率,并能明显抑制孵化仔鱼的体长.0.6 mg·L~(-1)及更高浓度的嘧菌酯可明显抑制斑马鱼胚胎眼睛、体节、尾部和心脏的发育.研究显示,嘧菌酯对斑马鱼多个生命阶段均具有一定毒性,但对早期生命阶段毒性更强,因此,其对鱼类早期生命阶段的影响值得重视.  相似文献   

14.
根据鱼鳔发育的不同阶段,从受精后0 h(0 hours post fertilization, 0 hpf)开始对5个发育阶段(0 hpf~孵化前、0~120 hpf、0~168 hpf、孵化后~120 hpf、120~168 hpf)的斑马鱼进行nano-ZnO暴露实验,研究不同浓度的nano-ZnO对斑马鱼鱼鳔的影响.结果表明,nano-ZnO悬浮液中溶解的Zn~(2+)不是导致斑马鱼死亡和鱼鳔缺损的唯一或主要原因.nano-ZnO暴露浓度越高,斑马鱼的死亡率和鱼鳔缺损率越高,存在剂量-效应关系.15 mg·L~(-1) nano-ZnO可造成90%的斑马鱼鱼鳔缺损和死亡,10 mg·L~(-1) nano-ZnO可导致斑马鱼鱼鳔面积缩小70%.斑马鱼鱼鳔早期发育阶段(0~168 hpf)对nano-ZnO敏感度大小为:出芽阶段(0 hpf~孵化前)充气阶段(孵化后~120 hpf)充气完成阶段(120~168 hpf).斑马鱼鱼鳔的发育面积和发育时间也受nano-ZnO暴露染毒的影响而发生变化.斑马鱼死亡率和鱼鳔缺损率(鱼鳔发育)之间存在相关性(r=0.978,p0.01).这表明斑马鱼鱼鳔的发育缺损是造成斑马鱼胚胎死亡的主要原因之一,但nano-ZnO对斑马鱼鱼鳔的影响机理,尤其是对鱼鳔出芽阶段和充气阶段的致毒机理需要进一步研究.  相似文献   

15.
镉是一种具有强致畸性和致癌性的重金属. 为研究镉暴露对早期胚胎发育的毒性效应,以斑马鱼为模式动物,选取5个镉浓度来处理斑马鱼胚胎4~120 hpf (hours post fertilization, 受精后小时),计算镉的半致死(LC50)浓度,研究7.50 mg/L镉对斑马鱼胚胎8个基因表达的影响. 结果表明:镉暴露导致斑马鱼胚胎产生小头、小眼、躯干弯曲、心脏发育异常以及死亡等异常. 通过原位杂交和定量PCR方法分析镉对抗氧化基因(prdx1和gstp1.2)、转录翻译相关基因(atf3、jdp2b和eif4a1b)、应激反应相关基因(hsp70l和hsp90aa1.1)以及脂肪酸结合蛋白基因(fabp7a)表达的影响,发现镉暴露将改变上述基因在组织和器官的表达及表达水平,这些影响可能与镉导致斑马鱼胚胎嗅球、侧线、神经和心脏的发育异常有关. 研究显示,镉的LC50浓度为15.20 mg/L,7.50 mg/L的镉可影响斑马鱼胚胎的氧化应激、转录翻译和早期神经发育等过程,并通过影响基因表达从而干扰斑马鱼胚胎发育,进而可能造成个体嗅觉、视觉和运动等功能缺陷.   相似文献   

16.
双酚AF暴露对胚胎期和幼鱼期斑马鱼的毒性效应   总被引:1,自引:0,他引:1       下载免费PDF全文
为明确不同发育阶段的斑马鱼对BPAF(双酚AF)暴露的易感性,采用暴露试验法初步研究了BPAF对胚胎期和幼鱼期斑马鱼的发育毒性. 结果表明:①BPAF暴露可延缓胚胎期斑马鱼的发育和孵化,使其出现心包水肿、卵黄囊异常、心率下降、心脏搏动停止等症状. ②暴露96 h后,ρ(BPAF)为2.0、2.5、3.0 mg/L暴露组胚胎期斑马鱼的畸形率高达100%,暴露24 h致畸的EC50(半数效应浓度)为2.00 mg/L,暴露96 h的LC50(半数致死浓度)为1.84 mg/L. ③暴露72 h后,对照组幼鱼期斑马鱼鱼鳔发育缺陷率为0;除ρ(BPAF)为1.0 mg/L暴露组外,其余BPAF暴露组幼鱼期斑马鱼鱼鳔发育缺陷率为100%. ④随着暴露时间的延长以及中毒程度的加深,幼鱼期斑马鱼出现的中毒症状依次表现为心包水肿、卵黄囊水肿、背脊弯曲、心跳停止,暴露48和72 h时其心包水肿的EC50分别为1.76、1.56 mg/L,暴露96 h的LC50为1.77 mg/L. 胚胎期和幼鱼期斑马鱼对BPAF暴露响应的差异分析显示,幼鱼期斑马鱼对BPAF暴露的反应更为敏感,幼鱼期斑马鱼的心包水肿症状可作为BPAF毒性响应的最佳指标之一.   相似文献   

17.
手性农药丁氟螨酯对斑马鱼胚胎的选择性发育毒性   总被引:1,自引:0,他引:1  
近年来丁氟螨酯(CYF)对非靶标生物的发育毒性已成为一个值得关注的问题,但其对水生生物的对映选择性效应尚不清晰.为评估丁氟螨酯对斑马鱼胚胎的对映选择性毒性,通过96 h的暴露试验,研究了梯度浓度的丁氟螨酯消旋体及对映体对斑马鱼胚胎的急性毒性.此外,试验还研究了丁氟螨酯对斑马鱼胚胎孵化率、卵黄囊水肿、心包囊水肿和身体弯曲的影响.根据急性毒性结果可知,毒性大小为S-CYF > Rac-CYF > R-CYF,其中S-CYF的毒性是R-CYF的2.3倍.72 hpf,500 mg·L-1S-CYF可显著诱导胚胎产生卵黄囊水肿(YSE)、体轴弯曲(CB)等畸形效应(p<0.05),而Rac-CYF降低了斑马鱼胚胎的孵化成功率.在本研究中发育毒性效应结果与急性毒性结果一致,均为S-CYF > Rac-CYF > R-CYF,表明丁氟螨酯对斑马鱼胚胎存在显著的对映选择性发育毒性,研究结果为丁氟螨酯的环境风险评估提供了理论依据.  相似文献   

18.
本研究考查了120#燃料油分散液(WAFs)对海洋青鳉(Oryzias melastigma)胚胎的毒性效应,测试其各发育阶段对WAFs的敏感性。将6 hpf(受精后小时数)、18 hpf和30 hpf的海洋青鳉胚胎分别暴露于不同浓度的WAFs中,并于暴露之后的12、24、48、72、96 h进行观察、记录并计算胚胎的蓝囊综合症(blue sac disease,简称BSD)指数、孵化率、心率以及半数致死浓度LC50值等指标。结果表明,WAFs暴露可以对海洋青鳉胚胎发育产生明显的毒性影响,包括发育畸形、孵化率和心率下降、死亡率上升等现象,并伴随着明显的时间-剂量效应。各项指标对于WAFs暴露的敏感性各不相同,以BSD指数和孵化率变化更为明显。胚胎对于120#燃料油毒性的敏感性随着发育呈现逐渐下降的趋势,随着暴露起点的延后,毒性影响逐渐减小。但是,WAFs对海洋青鳉胚胎心率的影响主要作用于心脏发育阶段。  相似文献   

19.
五氯酚对稀有鮈鲫胚胎毒性效应研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研究五氯酚(PCP)对稀有鮈鲫(Gobiocypris rarus)胚胎的致畸和毒性效应.以7.5,30,60,120,250μg/L5个浓度的PCP对0hpf(hpf,受精卵孵出时间)的稀有鮈鲫胚胎进行暴露染毒,同时设置空白对照组、二甲基亚砜溶剂对照组和雌二醇(EE2,2.5ng/L)阳性对照组.在立体显微镜下观察整个胚胎的发育过程,统计胚胎的孵化率、96hpf相对存活率和各时期的畸形率,并利用半定量RT-PCR检测胚胎中CYP1A基因和p53基因mRNA的表达.结果表明,PCP暴露能延迟稀有鮈鲫胚胎发育,并造成胚胎卵凝结、心包囊肿、脊柱弯曲等多种畸形甚至死亡.随着PCP暴露浓度的升高,稀有鮈鲫胚胎的孵化率和96hpf相对存活率降低,各时期的畸形率增加,并呈现一定的浓度效应.稀有鮈鲫胚胎CYP1A基因和p53基因mRNA表达被显著诱导,并随PCP浓度的升高而增加.PCP对稀有鮈鲫胚胎发育表现为显著的毒性效应.稀有鮈鲫胚胎孵化率、96hpf相对存活率、各时期畸形率及CYP1A基因和p53基因的诱导表达可以作为评价PCP毒性作用的敏感指标.  相似文献   

20.
Perfluorooctane sulfonate(PFOS) and ZnO nanoparticles(nano-ZnO) are widely distributed in the environment.However,the potential toxicity of co-exposure to PFOS and nano-ZnO remains to be fully elucidated.The test investigated the effects of co-exposure to PFOS and nano-ZnO on the hypothalamic–pituitary–thyroid(HPT) axis in zebrafish.Zebrafish embryos were exposed to a combination of PFOS(0.2,0.4,0.8 mg/L) and nano-ZnO(50 mg/L)from their early stages of life(0–14 days).The whole-body content of TH and the expression of genes and proteins related to the HPT axis were analyzed.The co-exposure decreased the body length and increased the malformation rates compared with exposure to PFOS alone.Co-exposure also increased the triiodothyronine(T3) levels,whereas the thyroxine(T4)content remained unchanged.Compared with the exposure to PFOS alone,exposure to both PFOS(0.8 mg/L) and nano-ZnO(50 mg/L) significantly up-regulated the expression of corticotropin-releasing factor,sodium/iodidesymporter,iodothyronine deiodinases and thyroid receptors and significantly down-regulated the expression of thyroid-stimulating hormone,thyroglobulin(TG),transthyretin(TTR) and thyroid receptors.The protein expression levels of TG and TTR were also significantly down-regulated in the co-exposure groups.In addition,the expression of the thyroid peroxidase gene was unchanged in all groups.The results demonstrated that PFOS and nano-ZnO co-exposure could cause more serious thyroid-disrupting effects in zebrafish than exposure to PFOS alone.Our results also provide insight into the mechanism of disruption of the thyroid status by PFOS and nano-ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号