首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究中国海峡西岸城市群冬季大气颗粒物水溶性离子的污染特征,采集该区域8个城市共14个采样点位(包含1个背景点)的PM2.5和PM2.5~10样品,采用离子色谱分析F-、Cl-、NO3-、SO42-、Na+、K+、NH4+、Ca2+和Mg2+ 9种水溶性离子的质量浓度.结果表明,海峡西岸城市群冬季大气颗粒物污染严重,PM2.5和PM10的日均值分别为89.65,135.65μg/m3,PM2.5占PM10的66.1%.城区水溶性无机离子主要集中在PM2.5上,其浓度分布存在空间差异,温州地区水溶性无机离子浓度处于较高水平;SO42-、NO3-和NH4+是水溶性无机离子的主要贡献者,其占PM2.5 中水溶性离子总量的79.6%~89.0%,占PM10的74.2%~83.4%.由于受冬季季风的影响,该区域非海盐离子对水溶性无机离子的贡献较大.NO3-/SO42-的质量浓度比显示,冬季海峡西岸城市群已处于机动车污染与燃煤污染并存的复合型污染状态.  相似文献   

2.
武汉市大气PM2.5中水溶性离子污染特征及来源   总被引:1,自引:0,他引:1  
于2016年8月—2017年4月采集了武汉市PM2.5样品,使用离子色谱法分析了PM2.5中的水溶性离子(F-、Cl-、SO2-4、NO-3、Na+、NH+4、K+、Mg2+、Ca2+),并研究其污染特征及来源.结果表明,武汉市PM2.5质量浓度变化范围为24.8~215.7μg·m-3,均值为(81.3±38.1)μg·m-3.9种水溶性离子的年均质量浓度占PM2.5质量浓度的29.3%,其中,SO2-4、NO-3、NH+4(三者合称SNA)为主要的水溶性离子,SNA占PM2.5质量浓度的23.3%~32.0%.硫氧化率(SOR)和氮氧化率(NOR)年均值分别为0.4、0.1,说明武汉市大气存在较强的SO2向SO2-4、NO2向NO-3转化的二次过程.观测期间,武汉市的细颗粒物整体呈弱碱性.Ca2+与Mg2+,以及NH+4与NO-3、SO2-4等均有显著相关性,NH+4、NO-3、SO2-4主要以(NH4)2SO4和NH4NO3的形式存在.武汉市全年NO-3/SO2-4比值为0.9,表明固定源贡献相对较大.主成分分析结果表明,武汉市大气PM2.5中水溶性离子主要来自于燃煤及机动车排放、工业生产、扬尘等.  相似文献   

3.
北京市PM2.5水溶性有机物污染特征   总被引:29,自引:0,他引:29       下载免费PDF全文
用离子色谱技术对北京市2001~2002年大气PM2.5中7种水溶性有机物(WSOC)(甲酸、乙酸、甲磺酸、乙二酸、丙二酸、丁二酸、戊二酸)及12种无机离子(F-、Cl-、NO2-、NO3-、SO32-、SO42-、PO43-、Na 、NH4 、K 、Mg2 、Ca2 )的污染水平进行了同步测定.结果表明,SO42-、NO3-及NH4 为PM2.5中主要的水溶性物种,分别占PM2.5质量的10.6%、7.4%和5.7%;7种WSOC的浓度为0.011~0.118靏/m3,占PM2.5质量浓度的0.01%~0.1%,其中浓度最高的为乙二酸,其次为乙酸、丙二酸、丁二酸等;对PM2.5各化学组分浓度的季节变化特征的分析表明,PM2.5及OC的高浓度污染均出现在冬季采暖期,而WSOC则出现在夏季;对乙二酸与其他各组分进行相关性分析表明,乙二酸与SO42-、K 、NH4 、NO3-有较强的线性相关性(r=0.83,0.57,0.49,0.33),而与Cl-、Na 、Mg2 、Ca2 、EC、OC相关性较差(r=0.24, 0.22,0.12,0.05,0.13,0.10).由乙二酸季节变化特征及与其他物种相关性等特征初步推断,北京市PM2.5二元羧酸的主要来源为光化学反应而形成的二次污染物,而非来源于机动车、海盐或土壤的一次排放.  相似文献   

4.
北京东北部城区大气细粒子与相关气体污染特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
于2008年7月~2009年4月的4个季节,在北京市朝阳区北部,利用VAPS通用型大气污染物采样仪(URG3000K)对大气细粒子(PM2.5)和环境空气中相关气体进行了同时采集,并利用IC离子色谱仪(DX-600型)分析了PM2.5中水溶性无机离子成分和环境空气中相关气体的含量.结果表明,PM2.5质量浓度春季>夏季>冬季>秋季;SO42-、NO3-和NH4+是PM2.5中最主要的3种水溶性无机离子,年均质量浓度分别为14.82μg/m3、11.57μg/m3和8.35μg/m3,三者浓度之和占PM2.5中总水溶性无机离子浓度的86.28%.SO42-、NH4+浓度占PM2.5浓度百分比均为夏、秋季高于冬、春季; NO3-浓度占PM2.5浓度的百分比为秋季>春季>夏季>冬季.空气中的SO2、NO2和NH3等气态污染物的含量直接影响PM2.5中二次离子SO42-、NO3-和NH4+的浓度, SO2、NO2浓度的季节特征为冬、春季高于夏、秋季,与SO42-、NO3-的季节变化规律相反; NH3浓度在夏季最高,冬季最低. PM2.5酸度在夏、秋季高于冬、春季,且夏、秋季PM2.5样品全部呈酸性,冬、春季PM2.5样品一部分呈酸性,一部分呈碱性.夏季SOR值和NOR值分别为冬季的4.8倍和3倍,表明夏季SO2和NO2更易转化生成SO42-和NO3-.PM2.5中SO42-、NO3-和NH4+主要以(NH4)2SO4、NH4NO3的形式共存于气溶胶体系中.  相似文献   

5.
济南春季大气PM2.5水溶性组分的半连续在线观测   总被引:3,自引:1,他引:2       下载免费PDF全文
利用大气细颗粒物(PM2.5)水溶性组分在线分析系统连续监测了2008年3~4月济南市PM2.5水溶性组分的浓度变化,并结合气溶胶部分前体物SO2、NO2、O3等的浓度数据和部分气象资料对监测数据进行了分析.结果表明,SO42-、NO3-和NH4+是PM2.5中水溶性离子的主要成分,分别占总水溶性组分的61.1%、13.4%和16.7%,且PM2.5中总水溶性组分的浓度,特别是SO42-的浓度,明显高于国内其他城市.温度、太阳辐射强度、混合层高度和风速等气象因素对总水溶性离子的浓度变化有重要影响.SO42-浓度白天明显高于夜间,而NO3-和NH4+的浓度昼夜变化幅度较小.SO42-和NO3-主要由SO2和NO2转化而来.后推气流轨迹分析表明,来自东北绕行西南方向和东北方向的混合气团结合济南的特殊地形及局地排放的污染物会加重济南春季PM2.5的污染.  相似文献   

6.
2008年奥运前后北京城、郊PM2.5及其水溶性离子变化特征   总被引:8,自引:0,他引:8  
2008年6月至9月,在北京城区清华大学和郊区密云水库开展大气颗粒物观测,采集了PM2.5样品共180个,并获得了PM2.5及12种水溶性离子的质量浓度.观测期间城区和郊区PM2.5浓度接近,分别为68.9 μg·m-3和52.9μg·m-3;二次无机离子SO42-、NO3-和NH4+是PM2.5中含量最高的水溶性离子...  相似文献   

7.
兴隆大气气溶胶中水溶性无机离子分析   总被引:6,自引:6,他引:0  
2009年9月~2010年8月在兴隆大气背景站,利用Andersen分级采样器进行大气气溶胶样品的采集,并利用离子色谱分析了其中的水溶性无机离子的成分含量.结果表明,TSP、PM2.1和PM1.1中总水溶性无机盐的年平均浓度分别为(89.66±47.66)、(54.44±34.08)和(44.39±29.95)μg·m-3,其中SO42-、NO3-、Ca2+和NH4+为兴隆大气气溶胶中最主要的水溶性无机离子.PM2.1中总水溶性无机离子的年平均浓度占TSP的61%.PM1.1总水溶性无机离子的年平均浓度占TSP的50%,占PM2.1的82%.PM1.1、PM2.1和TSP中水溶性无机离子总浓度季节性变化趋势一致,夏季>秋季>春季>冬季.NH4+与SO42-的摩尔比>2,表明NH4+未被SO42-完全中和.在细粒子中NH4+和SO42-、NO3-均有较好的相关性,相关系数分别为0.96和0.87,表明NH4+可能以(NH4)2SO4和NH4NO3的形式存在.  相似文献   

8.
霾天气南京市大气PM_(2.5)中水溶性离子污染特征   总被引:6,自引:1,他引:5  
为了讨论南京市大气细颗粒物(PM2.5)及水溶性组分在霾天气下的污染水平和污染特征,2007年6月10日至2008年5月29日对南京市大气细粒子PM2.5进行了采样,用PM2.5在线监测浓度、离子色谱法等分别测得PM2.5的质量浓度、水溶性离子组成,初步研究了南京市大气细粒子(PM2.5)及水溶性组分在霾天气下的污染水平和污染特征。结果表明,南京市大气细颗粒物污染严重,霾天气下PM2.5中总水溶性离子质量浓度为54.28μg/m3,为非霾天气的1.6倍。分析的6种离子中SO42-、NO3-、NH4+是PM2.5的主要组成成分。灰霾期间PM2.5与NO3-、SO42-、NH4+的相关性较高,PM2.5中颗粒物的主要存在形式可能为NH4Cl、NH4NO3,(NH)42SO4或NH4HSO4。对比不同季节不同天气下的SOR(SO2转化率)和NOR(NOx转化率),发现霾天气下SO2和NOX转化率高于正常天气,表明SO2、NO2在霾天气更容易转化为二次粒子。  相似文献   

9.
济南秋季大气PM_(2.5)中水溶性离子的在线观测   总被引:5,自引:1,他引:4  
2008年9月29日—10月15日使用大气细颗粒物快速捕集系统实时、在线分析了济南秋季PM2.5中水溶性离子的质量浓度,并结合气象资料和部分前体物(SO2,NOx和O3)浓度进行了相关分析.结果表明:济南秋季燃煤污染严重,SO42-,NO3-和NH4+是大气PM2.5中水溶性离子的主要组分,三者质量浓度之和占总水溶性离子(TW SI)质量浓度的90%以上;SO42-污染物主要受远距离传输的影响,NO3-和NH4+污染物主要受局地源的影响;SO42-和NO3-的昼夜形成机理不同,它们的形成过程主要受相对湿度、温度和O3浓度的影响.周边地区生物质燃烧导致了济南重污染天气的产生,降水对污染物的清除作用较强.对比土壤和海盐中各种离子的质量浓度比可知,济南秋季PM2.5中的K+受生物质燃烧的影响较大,C l-主要来源于海盐和生物质燃烧,Na+主要来源于海盐.  相似文献   

10.
基于高分辨率MARGA数据分析石家庄PM2.5成分谱特征   总被引:8,自引:0,他引:8  
利用MARGA离子在线分析仪ADI 2080于2014年8月21日~9月23日在石家庄市气象局楼顶开展了PM2.5组分连续观测试验,结合气象、环境监测资料对其进行了相关分析,结果表明:8种气溶胶水溶性离子质量浓度总和与石家庄市PM2.5浓度保持高度一致,二次离子SO42-、NH4+、NO3-占水溶性离子总和的88.4%,是石家庄PM2.5的主要组分,SO42-质量浓度在水溶性离子中所占比例最大,随气温的升高而增加,随湿度的增大有所下降,NO3-则相反,随湿度的增大所占比例增加明显;能见度随水溶性离子质量浓度增加呈幂函数快速下降,二次离子SO42-、NH4+、NO3-质量浓度与盛行风向和工业区布局、太行山地形有关,浓度最大的风向为东北风,最小的为偏西风;SO42-、NO3-的气态前体物SO2、NO2气相、液相转化率SOR、NOR均随着湿度增大而增大,SOR与湿度关系更密切,NOR受辐射影响日变化呈单峰型;Ca2+做为建筑材料的标识元素,干燥的晴天及偏西风影响下质量浓度较大,在该种天气型下需注意控尘.  相似文献   

11.
2010年1月上海市政府颁布了《崇明生态岛建设纲要(2010-2020)》,本文从2013年9月1日至2014年8月31日运用颗粒物采集仪器于森林公园、绿华、现代农业园区、城桥四个空气自动监测点位监测PM10和PM2.5,分析PM10和PM2.5的浓度与风向的关系得出PM10和PM2.5污染与江对面的吴淞工业区、宝钢、石洞口电厂、罗店工业区乃至江苏太仓沿江工业区的污染物排放密切相关,在相当大的程度上主要是来自于他们的贡献.  相似文献   

12.
南京市大气中PM10、PM2.5日污染特征   总被引:16,自引:0,他引:16  
于2001年秋季(11月)、夏季(8月)对南京市五大典型功能区的大气颗粒物(PMl0、PM2.5)进行了监测研究。结果发现,南京市颗粒物污染严重,PMl0、PM2.5的超标率分别达到了65%、85%;颗粒物浓度季节变化大,11月污染物浓度明显大于8月,PMl0、PM2.5分别相差l68.44μg/m^3、190.1μg/m^3;PMl0中PM2.5比重较大,大约为75.9%,对人体健康潜在危害大。  相似文献   

13.
我国四城市空气中PM2.5和PM10的污染水平   总被引:60,自引:1,他引:60       下载免费PDF全文
为研究我国广州、武汉、兰州、重庆4城市空气中PM2.5和PM10的污染水平,在这我国4城市分别设一污染点和对照点进行了为期2年的PM2.5、PM10和TSP监测。结果表明,空气中颗粒物的污染是严重的,污染点比对照点更甚.对人体健康危害大的PM2.5普遍超过美国新标准的2-8倍。  相似文献   

14.
分析呼和浩特市2011年8月到2012年7月逐日的PM10,PM2.5的质量浓度监测值,结果表明,呼和浩特市PM10和PM2.5污染在春季和冬季较夏季、秋季严重;PM10和PM2.5有良好的线性关系;PM2.5/PM10(β)平均值为0.55.  相似文献   

15.
北京市大气中PM10和PM2.5的污染水平特征研究   总被引:7,自引:0,他引:7  
2004-2005年在北京市区和背景点进行了PM10和PM2.5质量浓度监测,结果表明,市区和背景点的PM质量浓度有季节特性,采样点的PM2.5/PM10的季节平均变化值相差不大,市区采样点的PM质量浓度普遍要比背景采样点高,和洛杉矶、悉尼等奥运城市相比,北京市PM10 比这些奥运城市高3~5倍,PM2.5高2倍左右,说明北京市的大气污染水平还相当严重.  相似文献   

16.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

17.
利用TEOM 1405-F和TEOM 1405颗粒物实时监测仪,研究了2013年12月至2014年5月临平地区PM2.5和PM10质量浓度实时变化特征,并结合气象五参数观测资料,对影响大气颗粒物分布特征的因素进行了分析,研究结果发现:冬季PM2.5和PM10的日均质量浓度明显大于春季,冬季PM2.5日均质量浓度范围为17.0 ~ 349.1 μg/m3,PM10日均质量浓度范围为18.8~516.9μg/m3,春季PM2.5日均质量浓度范围为20.4~167.6μg/m3,PM10日均质量浓度范围为38.2 ~243.3μg/m3;通过线性回归分析发现PM25和PM10存在较好的线性关系,说明PM10相对固定的受到PM2.5的影响,且污染物来源稳定;冬季PM2.5和PM10日均质量浓度存在三峰值波动状态,而春季PM2.5和PM10日均质量浓度存在双峰值波动状态;较大的风速、较高的气压和降水对于颗粒物的清除效果明显.  相似文献   

18.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

19.
天津市大气中PM10、PM2.5及其碳组分污染特征分析   总被引:14,自引:4,他引:10       下载免费PDF全文
吴琳  冯银厂  戴莉  韩素琴  朱坦 《中国环境科学》2009,29(11):1134-1139
2007年12月~2008年10月期间,分3个时段,设置2个点位,采集了天津市大气环境中PM10和PM2.5样品.用热光反射分析仪测定样品中的碳组分含量,并用OC/EC最小比值法估算二次有机碳(SOC)的浓度.结果表明,市区采样点颗粒物浓度高于郊区,2个采样点的颗粒物浓度变化趋势一致.5月份 PM2.5/PM10比值最小,主要由于土壤风沙尘对PM10的贡献较大.PM10和PM2.5中的有机碳(OC)、元素碳(EC)浓度12月份最高,且变化趋势相同.OC占总碳(TC)比例较高,PM10中OC/TC为0.60~0.83,PM2.5中OC/TC为0.55~0.81.碳组分主要集中在PM2.5中,PM10中约有76%的OC存在于PM2.5中.12月份的SOC浓度最高,与12月份的气象条件和污染源排放等因素有关.  相似文献   

20.
利用均匀分布于烟台市区的10个空气自动监测点位2013年的数据研究了PM10和PM2.5浓度的季节性变化特征.对PM10 、PM2.5质量浓度分别进行了月均值和季节性均值变化特征分析,研究了不同季节和雾霾天气情况下,PM2.5在PM10中含量的变化情况.结果表明:烟台市区细颗粒物污染较严重,各采样点各月均值中超过二级标准的比例达到88.3%;2013年烟台市区PM 10、PM2.5质量浓度均呈现出春冬季节较高、夏秋季节较低、采暖季明显高于非采暖季,PM10浓度风沙季明显高于其他季节的特点;PM2.5对PM10的贡献呈现明显的季节性变化规律,在雾霾天气情况下明显偏高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号