首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
郑香凤  汪莉  郑天龙  王娟  汪群慧 《环境工程》2013,(Z1):433-436,446
本试验针对含硫化物和硝酸盐氮的人工模拟废水,以硫化物为电子供体、硝酸盐为电子受体,采用厌氧生物填料塔进行同步脱氮除硫的实验研究,探讨了该生物填料塔的启动性能及塔内生物膜菌群的生长特性。结果表明:当S/N(摩尔比)为5∶3,初始pH为8.38.5,温度为28℃,进水硫化物负荷为500 g/(m3·d)时,硫和氮的去除率分别达到96.7%和87.5%;厌氧生物填料塔中的优势菌群为脱氮硫杆菌,该菌的适宜生长温度为288.5,温度为28℃,进水硫化物负荷为500 g/(m3·d)时,硫和氮的去除率分别达到96.7%和87.5%;厌氧生物填料塔中的优势菌群为脱氮硫杆菌,该菌的适宜生长温度为2830℃,pH值范围为630℃,pH值范围为67;且经驯化后该菌种对初始硫化物浓度的耐受能力提高到6257;且经驯化后该菌种对初始硫化物浓度的耐受能力提高到6251250 g/m3。  相似文献   

2.
为探究信号分子联合菌对同步脱氮除硫效果的影响,发现同时投加信号分子和脱氮硫杆菌可以加快硫化物和硝酸盐氮的去除且相比单独投加时更有利于单质硫的稳定积累和氮气产量的增加,并通过FISH技术检测了反应结束后微生物总量,信号联合脱氮硫杆菌可以增加微生物总数,因此能够实现较好地脱氮除硫效果.实验从不同信号分子浓度中找出了有利于单质硫稳定积累的最佳浓度,进而在此浓度下分析了单独投加信号分子、单独投加脱氮硫杆菌,以及同时投加信号分子和脱氮硫杆菌3种情况下的脱氮除硫效果.结果表明,当硫化物浓度为200 mg·L-1时,延长反应时间至72 h后,信号分子联合脱氮硫杆菌使硫化物的去除率提高至99. 8%,硝酸盐去除率提高至96. 9%,且单质硫转化为硫酸盐的速率减慢,氮气的产量增加,反应结束后其单质硫和氮气的量分别达到59. 0 mg和80. 0 m L.当硫化物浓度为300 mg·L-1时,单独投加2. 5μmol·L-1的信号分子在72 h时其硫化物和去除率达到99. 0%,硝酸盐的去除达到93. 9%,单质硫和氮气的产量分别达到63. 1 mg和79. 5 m L.  相似文献   

3.
一体式厌氧-好氧流化床反应器同步脱氮除硫实验   总被引:2,自引:0,他引:2  
竺美  杨平  郭勇  郑德会 《环境科学学报》2008,28(10):1993-1999
采用一体式厌氧-好氧流化床反应器处理含氮和含硫化物的废水,分别考察了硫氮比(硝氮和亚硝氮)、碳氮比(氨氮)等因素对同步脱氮除硫效果的影响,并对厌氧区固体产物进行了分析.实验结果表明:混养条件下获得了较好的脱氮、脱硫、去除COD的效果;s2-浓度增加对厌氧COD去除、反硝化过程无显著影响;当S2-浓度小于4.6mmol·L-1时,对厌氧氨氮去除有一定的促进作用.S/N(NO-3-N和NO-2-N)在0.2~1.7范围内.可以获得20%~75%单质硫转化率.C/NH4 4-N的降低对厌氧脱氮效果无明显影响,但可促进硫化物的去除.X射线衍射分析表明,厌氧区固体产物为单质硫.好氧进水中硫化物浓度增加对好氧区COD去除影响不明显,但S2-浓度大于15mg·L-1时会对硝化过程产生明显抑制.  相似文献   

4.
强化厌氧污泥体系同步脱硫反硝化特性研究   总被引:4,自引:2,他引:2  
徐金兰  侯圣春  黄廷林 《环境科学》2010,31(5):1246-1251
以硫化物为电子给体的自养反硝化厌氧体系是代替传统异养反硝化工艺处理低C/N比含氮废水的有效工艺,可以同时去除硫化物和硝酸盐.将脱氮硫杆菌菌悬液接种到厌氧污泥体系中,脱氮硫杆菌快速富集,采用5组进水比N/S比不同的反应瓶进行试验,运行15d后,测定不同时段的出水硫化物、硝酸盐、亚硝酸盐、硫酸盐浓度等指标,考察强化厌氧污泥体系去除硫化物和硝酸盐的特性,并对生化反应机制进行初步研究.结果表明,强化厌氧污泥体系运行3h后,进水中90%的硫化物被去除,硫化物的去除与进水N/S比无关,硫化物(以S计)去除速率高达20~24g·(m3·h)-1,是相关文献报道的10倍左右;运行6h后,进水中65%的硝氮被去除,硝氮的去除负荷随着进水N/S比的提高而增大,最高达到940g·(m3·h)-1,约为硫自养反硝化体系硝氮去除负荷的2倍,此时体系中亚硝氮积累,最高浓度达到93mg·L-1,进水N/S比低的条件下,6h后亚硝氮消失,进水N/S比较高时,21h后出水中未检测到亚硝氮.表明强化厌氧污泥体系停留6h后可以实现同时去除硫化物和硝酸盐,但硝酸盐首先转化为亚硝氮.与以往不同的是研究发现硫化物与生物硫粒产生多硫化合物的链式反应,是硫化物迅速转化的主要途径,此外,还原硝氮的电子给体并不来源于硫化物,可能主要来源于体系中产生的单质硫.  相似文献   

5.
自养反硝化脱氮耦合沼气同步脱硫效能研究   总被引:1,自引:1,他引:0  
污水深度脱氮问题日益突出,在实现污水深度脱氮的过程中尽可能降低运行成本更是符合目前我国的发展目标,因此,开发经济绿色的污水脱氮技术对可持续发展具有重大意义.本试验提出自养反硝化脱氮耦合沼气同步脱硫工艺,具有成本低,资源利用率高等优势.以沼气中的硫化氢作为电子供体,实现了污水中同步脱氮及沼气脱硫净化的耦合,并探究了上升流速、硫氮比对该工艺运行效能的影响.实验结果显示,以硫化氢代替硫化物作为电子供体参与反硝化,对工艺脱氮效能无明显影响,在低硝酸盐负荷条件下运行时,污水脱氮效能不受气体上升流速及硫氮比的影响,均能达到100%.而本工艺的脱硫效能受上升流速影响较小,受硫氮比影响较大.在不同上升流速下,硫化氢去除率均为100%.在硫氮比为5∶8时,硫化氢100%转化为硫酸盐;硫氮比为5∶5时,硫化氢去除率为99.1%,单质硫产率约为30%;硫氮比为5∶2,回流比为1∶1时,硫化氢去除率最高可达91%,单质硫产率为77%.本试验可为后续自养反硝脱氮同步沼气脱硫工艺参数优化及应用的拓展提供理论依据和参考.  相似文献   

6.
采用新型一体化多级生物膜反应器处理高氮小城镇污水,在反应器中实现了高效的同步硝化反硝化脱氮,同时采用多点进水方式解决了脱氮低碳源问题.试验结果表明,在温度20℃,有机负荷(COD)为0.85 kg·m-3·d-1、氮负荷为0.27 kg·m-3·d-1、HRT为9h、分点进水条件下,可使进水COD为320 mg.L-1,TN为97 mg.L-1,NH;.N为84mg·L-1左右的高氮城镇污水,出水COD、TN、NH4 -N分别为16 mg·L-1、19.1mg·L-1、6.86 mg·L-1,达到国家一级排放B标准.  相似文献   

7.
《环境工程》2015,(8):42-46
目前生物同步脱氮除硫工艺受到了广泛关注,而多数工艺仅限于对运行负荷和性能的初始研究,同步反硝化脱氮硫化物氧化除硫和硫酸盐还原厌氧氨氧化的生化反应和微生物的降解机制还亟待进一步研究阐明。为此,对生物同步去碳脱氮除硫的运行性能,模型建立和相关微生物菌群进行了探讨,并提出其未来的发展方向。  相似文献   

8.
反硝化脱硫微生物燃料电池的可行性研究   总被引:2,自引:1,他引:1  
微生物燃料电池(microbial fuel cell,MFC)可在去除废水中污染物的同时回收电能.以S2-和NO-3-N分别作为阳极电子供体和阴极电子受体,研究了反硝化脱硫MFC的同步阳极除硫与阴极脱氮,分析了阳极进水S2-浓度对MFC产电性能及污染物去除情况的影响,探究了MFC阳极石墨纤维丝上的硫沉积情况及其对内阻的影响.结果表明,反硝化脱硫MFC在32 d内实现稳定的阳极除硫与阴极脱氮.外阻为100Ω时,电压稳定在(176.0±6.9)m V,相应的S2-和NO-3-N去除负荷分别为(0.94±0.04)kg·m-3NC·d-1和(11.1±0.6)g·m-3NC·d-1.MFC的产电能力随着阳极进水S2-浓度的增加逐渐增强,SO_2-4的生成率和NO-3-N去除负荷受S2-浓度影响较小.在试验S2-浓度下S2-的去除较彻底,SO_2-4的生成率均超过65%.NO-3-N去除负荷维持在12 g·m-3NC·d-1左右,出水NO-2-N浓度均低于0.01 mg·L-1.反硝化过程较完全.在运行过程中,MFC阳极的石墨纤维丝上会沉积颗粒硫,降低电极的有效面积,使MFC的内阻升高.  相似文献   

9.
耦合厌氧氨氧化反应的高氮负荷型双室MFC性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
实验针对厌氧氨氧化反应在双室型MFC阳极和阴极2种形式的耦合,将厌氧氨氧化菌分别接种于a、b-双室型MFC的阳、阴极,并探究其产电、脱氮性能及脱氮机理.结果表明,2种类型的MFC均可在NH+4-N、NO-2-N浓度分别为400 mg·L-1和528 mg·L-1的高氮浓度模拟配水条件下稳定启动.与开路状态下的线性关系曲线不同,2类MFC在闭路状态下氨氮、亚硝态氮浓度均呈单指数关系衰减曲线,脱氮效率显著提高,周期内氨氮、亚硝态氮去除率均分别达到99%和85%以上.另外a、b-MFC平均容积氮去除负荷分别为0.417 kg·m-3·d-1和0.516 kg·m-3·d-1.在外阻1500Ω条件下,a-MFC最高输出电压48.0 m V,b-MFC最高输出电压可达到502.2 m V,b-MFC稳定输电周期约2170 min.  相似文献   

10.
生物处理含硫酸盐废水生成单质硫的研究进展   总被引:1,自引:0,他引:1  
介绍了目前国内外生物处理含硫酸盐废水生成单质硫常用微生物,包括光合细菌、无色硫细菌和脱氮硫杆菌,对其脱硫原理及发展前景进行了分析;同时综述了两相厌氧吹脱与沼气脱硫联合工艺、两相厌氧与硫化物氧化联合工艺、同步脱硫脱氮工艺处理硫酸盐生成单质硫的原理及研究现状,并分析了各自的优缺点。  相似文献   

11.
采用外循环序批式反应器(ECSBR),通过向反应器中分阶段投加硫化物,成功抑制体系中亚硝酸氧化菌(NOB)的活性,实现了城市污水单级短程硝化/厌氧氨氧化自养生物脱氮,出水氨氮为3.78 mg·L-1,氨氮去除率为88.4%,氮去除负荷为66.8 g·m-3·d-1.在投加硫化物前,系统氮转化途径以全程硝化为主,出水硝酸盐为13 ~22 mg·L-1,生成硝态氮与去除氨氮比值>0.9.在投加硫化物后,NOB的活性受到了抑制,出水硝酸盐降为4.18 mg·L-1,生成硝酸盐与去除氨氮比值平均为0.17.体系中大量的氮以氮气的形式被去除,占进水氮的65.4%.氮转化途径由全程硝化向短程硝化/厌氧氨氧化耦合脱氮转化.研究还表明,硫化物对于体系NOB的抑制是可逆的,停止投加硫化物后,NOB的活性又重新恢复.因此,分阶段投加硫化物能保证反应过程中对NOB的持续抑制作用,为实现单级自养脱氮工艺的快速启动和稳定维持提供了一种新的策略.  相似文献   

12.
基于PCR-TGGE技术的餐厨垃圾厌氧消化微生物群落结构解析   总被引:1,自引:0,他引:1  
为了解不同负荷下单相餐厨垃圾厌氧消化反应器内微生物群落结构演替特征,在单相厌氧消化反应器负荷为2.0~8.5kg·m-·3d-1(以VS计)的不同负荷条件下取样,运用16SrDNA的PCR-TGGE技术对反应器内微生物进行动态追踪.同时,运用Dice系统和NMDS软件对PCR-TGGE图谱进行分析.结果表明,负荷为4.0~6.0kg·m-·3d-1时,微生物群落结构变化不大;负荷为6.0~7.0kg·m-·3d-1时,微生物群落结构变化较为明显;负荷分别为7.0~8.0kg·m-·3d-1及8.5kg·m-·3d-1时,微生物群落结构变化最为明显.纵观整个过程,在餐厨垃圾厌氧消化反应器有机负荷在2.0~8.5kg·m-·3d-1下厌氧反应器内的微生物群落结构存在明显的阶段性演替;负荷为7.0kg·m-·3d-1时微生物群落结构的丰富度最好.  相似文献   

13.
硫氮比对废水脱氮与沼气脱硫耦联功能茵的影响   总被引:1,自引:1,他引:0  
陈子爱  邓良伟  贺莉 《环境科学》2011,32(5):1394-1401
从废水脱氮与沼气脱硫耦联反应器中分离到了2株同步脱氮除硫功能菌--荧光假单胞菌(Pseudomonas fluorescens)和铜绿假单胞菌(Pseudomonas aeruginosa).在pH 7.0,温度30℃,无供氧,培养时间2 d的条件下进行了2株功能菌纯培养的同步脱氮除硫效果试验,研究了不同硫氮比对同步脱...  相似文献   

14.
大量未经处理的含硫化物和硝酸盐废水的排放将带来严重的环境问题.根据以废治废原则,使用厌氧滴滤塔反应器构建的同步脱硫耦联反硝化脱氮反应(SDD)能很好的去除废水中S~(2-)和NO-x-N.其中以聚氨酯泡沫为填料的厌氧滴滤塔反应器中生物活性最强,脱氮脱硫效果最好.体系中功能菌优先将S~(2-)氧化成S0,待S~(2-)去除完全后,再进一步将S0氧化成SO_4~(2-).同时,SDD反应降解NO_3~--N的速率快于NO_2~--N.进水S/N摩尔比越大,产物中SO_4~(2-)相对含量越低.结合实际工程考虑,应控制进水S/N摩尔比在5/3~5/2之间,S~(2-)浓度控制在538 mg·L-1以下.微生物群落结构分析结果表明,Thiobacillus属在4组反应器上占绝对优势,其相对丰度均高于40%.其次相对丰度较高的Rhodanobacter、Arenimonas和Truepera属与厌氧反硝化作用密切相关.对4组反应器中微生物进行Alpha-多样性分析结果表明取得较好脱硫耦联反硝化效果的体系中物种多样性指数也较高.  相似文献   

15.
复合式厌氧氨氧化反应器脱氮性能研究   总被引:4,自引:1,他引:3  
采用低速机械搅拌装置,以无纺布作为固定床的填料,把搅拌床与固定床的优点有机结合起来,设计一种复合式厌氧氨氧化反应器.在反应器中,生物滞留量相对较高,微生物的性状由接种时的碎絮状很快转变成颗粒状,短期内反应器系统的脱氮性能迅速提高,启动时间大为缩短.仅用38d,反应器中总氮去除速率稳定增长至1.9kg·m·-3d-1.随...  相似文献   

16.
魏霞  张少辉 《环境科学学报》2017,37(8):2951-2959
以除硫硝化微生物燃料电池(Microbial Fuel Cell,MFC)处理含S~(2-)/NH_4~+的模拟无机废水,研究了不同进水S~(2-)浓度下MFC的产电性能、污染物去除效果和阳极室硫累积情况.结果表明,除硫硝化MFC可实现同步阳极除硫和阴极硝化,并通过非生物电化学作用和生物电化学作用共同产电.进水S~(2-)浓度为(60.8±2.9)、(131.7±2.4)、(161.7±4.5)和(198.1±3.1)mg·L~(-1)时,最佳阳极碳刷清洗周期分别为3、3、3、4个换水周期,前3个进水浓度下的换水周期可分别缩短为6、8和8 h.MFC阴极硝化完全,不受进水S~(2-)浓度影响,但氧从阴极向阳极的渗漏导致阳极库仑效率较低(40%).适当增加进水S~(2-)浓度可增强MFC的产电性能并提高S~(2-)去除负荷和颗粒硫累积比.除硫硝化MFC适宜的进水S~(2-)浓度为(161.7±4.5)mg·L~(-1),相应的最大功率密度为5.77 W·m~(-3),周期产电量为(141.0±5.2)C,S~(2-)去除负荷为(0.31±0.00)g·L~(-1)·d~(-1),颗粒硫累积比达58%.阳极碳纤维丝上沉积有粒径约100 nm的颗粒硫.阳极悬浮物与沉积物相比,悬浮物中S0含量比例较高,而S6+含量比例较低.  相似文献   

17.
紫色土地区水文特征对硝态氮流失的影响研究   总被引:18,自引:3,他引:18  
采用人工降雨模拟的方法,研究水文传输途径对紫色土中NO3--N流失的影响.研究结果表明,在所有雨强中均观察到壤中流的存在.在小雨强长历时的降雨中壤中流的径流量大于大雨强短历时降雨;随着雨强的增大,壤中流的径流系数下降.在紫色土地区,氮素的流失途径不仅包括地表径流而且包括壤中流,并且壤中流是NO3--N的主要水文传输途径.无论是否受到施肥措施的影响,壤中流中NO2--N浓度均高于地表径流.在对照小区,壤中流中NO3--N平均浓度是地表径流的7倍以上;施肥后壤中流NO3--N平均浓度为26.07mg·L-1,是地表径流的20倍以上.在对照小区,壤中流NO3--N的流失量占流失总量的30%以上;在施肥小区,壤中流NO3--N流失量占总流失量的90%以上.在紫色土地区,土壤特征和降雨特征决定了该地区壤中流形式的普遍存在,而NO3--N以壤中流流失的特点与当地施肥习惯的耦合效应增大了该地区的NO3--N流失风险.  相似文献   

18.
The UCD/CIT model was modified to include a process analysis (PA) scheme for gas and particulate matter (PM) to study the formation of secondary nitrate aerosol during a stagnant wintertime air pollution episode during the California Regional PM2.5/PM10 Air Quality Study (CRPAQS) where detailed measurements of PM components are available at a few sites. Secondary nitrate is formed in the urban areas from near the ground to a few hundred meters above the surface during the day with a maximum modeled net increase rate of 4 μg·m−3·d−1 during the study episode. The secondary nitrate formation rate in rural areas is lower due to lower NO2. In the afternoon hours, near-surface temperature can be high enough to evaporate the particulate nitrate. In the nighttime hours, both the gas phase N2O5 reactions with water vapor and the N2O5 heterogeneous reactions with particle-bound water are important for secondary nitrate formation. The N2O5 reactions are most import near the surface to a few hundred meters above surface with a maximum modeled net secondary nitrate increase rate of 1 μg·m−3·d−1 and are more significant in the rural areas where the O3 concentrations are high at night. In general, vertical transport during the day moves the nitrate formed near the surface to higher elevations. During the stagnant days, process analysis indicates that the nitrate concentration in the upper air builds up and leads to a net downward flux of nitrate through vertical diffusion and a rapid increase of surface nitrate concentration.  相似文献   

19.
黄河上游灌区连作稻田N2O排放特征及影响因素   总被引:1,自引:1,他引:0  
黄河上游灌区高产连作稻田氮肥的过量施用引起土壤氮素盈余,进而导致稻田N2O排放量增大.为了探明水稻连作模式下稻田N2O排放特征及影响因素,采用静态箱-气相色谱法,开展了为期2年的连作水稻田试验研究.试验共设置3个施氮处理,包括常规氮肥300kg.hm-2(N300)、优化氮肥240kg.hm-2(N240)和对照不施氮肥(N0),并在稻田连作的第2年,对N240处理灌溉节水30%.2年连作试验结果表明,水稻生长季稻田N2O排放主要发生在水稻施基肥后及水稻生长的中后期,在稻田灌水泡田后N2O排放速率达最大值.稻田高氮肥(300kg.hm-2)施用显著增加N2O的排放量,优化氮肥(240kg.hm-2)处理可有效降低土壤N2O排放量(p<0.01).水稻生长季稻田淹水状态时N2O排放量极低,稻田灌溉节水会相应增加土壤N2O排放量.土壤温度变化对稻田N2O的生成和排放会产生较大影响,但受稻田肥水管理等因素的影响,温度与N2O排放量相关性不显著.灌区稻田土壤N2O排放通量与田面水NO3--N含量变化及耕层0~40cm土壤NO3--N积累量变化有显著的相关性.稻田连作显著增加了耕层土壤剖面0~40cm土层NO3--N的积累量,耕层土壤NO3--N积累量的增加进而加大了土壤N2O排放的风险.在宁夏黄灌区稻田常规灌水和高氮肥(300kg.hm-2)水平下,2年连作稻田水稻生长季土壤N2O总排放量分别达55.98×104kg.a-1和51.48×104kg.a-1,在100a时间尺度上的全球增温潜势(GWPs)均值为16.02×107kg.hm-2(以CO2计),表明黄灌上游灌区高氮肥施用导致稻田N2O排放量增大,由此引起的增温潜势严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号