首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
李开叶  赵婷婷  陈佳  赵秀兰 《环境科学》2021,42(4):2047-2055
通过盆栽试验研究了油菜秸秆、蚕豆秸秆、泥炭、猪粪堆肥和生物炭这5种有机物料对贵州石灰岩黄壤区某砷(As)和镉(Cd)复合污染稻田土壤As/Cd有效性、水稻根表铁膜及As/Cd吸收转运的影响.结果表明,施用有机物料显著提高了有机质和水稻生物量;除油菜秸秆对土壤pH值影响不明显外,施用有机物料显著提高土壤pH值,使土壤有效Cd含量降低34.77%~82.69%;猪粪堆肥和生物炭使土壤有效As含量显著提高,油菜秸秆和泥炭处理使土壤有效As含量显著降低;施用有机物料有助于水稻根表铁膜的形成,并使其中Cd、As含量分别提高17.73%~151.03%和28.49%~94.86%,使水稻糙米Cd含量降低15.87%~79.45%,As含量降低27.04%~82.51%,降幅以生物炭处理最大;有机物料还显著降低Cd在根-茎-叶-籽粒的转运系数及As从茎向籽粒转运系数.相关分析表明,土壤pH、有效Cd和铁膜Cd含量是影响籽粒Cd累积的主要因素,土壤pH、有机质和铁膜As含量是影响籽粒As累积的主要因素.有机物料通过改变土壤pH、有机质含量及铁膜中As和Cd含量,影响水稻对As和Cd的吸收和转运.  相似文献   

2.
在典型镉(Cd)污染稻田上,采用田间小区试验研究脲酶抑制剂N-丁基硫磷酰三胺(NBPT)和硝化抑制剂双氢胺(DCD)与尿素同步基施对土壤氯化钙提取态Cd(CaCl2-Cd)、根表胶膜Cd和水稻各部位Cd含量的影响.结果表明:与对照相比,NBPT、DCD和NBPT+DCD处理均在一定程度上降低土壤CaCl2-Cd含量,NBPT+DCD处理CaCl2-Cd含量显著降低15.0%.NBPT与NBPT+DCD处理提高了水稻根表胶膜量.NBPT+DCD处理稻米Cd含量显著降低18.4%,Cd由根向稻米的转运系数(TF米/根)、茎向叶的转运系数(TF叶/茎)和茎向稻米的转运系数(TF米/茎)分别降低20.0%、40.6%和38.1%.Cd的TF米/根和TF米/茎降低是NBPT和DCD配施降低稻米Cd含量的主要原因.NBPT和DCD与尿素同基施是一种降低稻米Cd含量的有效措施.  相似文献   

3.
紫云英还田配施石灰对水稻镉吸收转运的影响   总被引:1,自引:0,他引:1  
采用田间小区试验, 研究了紫云英(CMV)与石灰(L)单施及两者配施(CMVL)对土壤Cd有效性、水稻根表胶膜及Cd吸收转运的影响.结果表明: L与CMVL处理土壤pH值分别显著提高2.11~2.43和1.68~2.48个单位、二乙烯三胺五乙酸提取态(DTPA-Cd)含量分别显著降低18.88%~40.53%和20.74%~36.85%, 而CMV处理对其无显著影响.CMV处理水稻成熟期根表胶膜Cd吸附量(DCB-Cd)显著提高86.72%, 根Cd吸收显著增加124.27%, Cd由叶向米的转运系数提高5.58倍, 稻米Cd含量显著增加58.54%. L和CMVL处理成熟期DCB-Cd含量分别显著降低34.86%和42.42%, Cd由根表胶膜向根的转运系统分别显著提高170.6%和158.8%、Cd由根向茎的转运系数分别显著降低75.87%和74.71%、Cd由根向米的转运系数分别显著降低74.38%和68.13%, 稻米Cd含量分别显著降低54.88%和51.83%.土壤pH值、DTPA-Cd和DCB-Cd含量是影响稻米Cd含量的主要因素.在镉污染稻田施用紫云英时, 建议配施石灰可达到显著降低稻米Cd的效果.  相似文献   

4.
张剑  孔繁艺  卢升高 《环境科学》2022,43(10):4679-4686
以浙江南部重金属镉(Cd)轻度污染酸性稻田为对象,以当地应用最广泛的3种无机钝化剂(硅钙镁钾肥、钙镁磷肥和石灰)为材料,通过田间试验研究了不同用量(750、1500和2250 kg ·hm-2)钝化剂阻控土壤酸化与稻米Cd积累的效果与化学机制.结果表明,3种钝化剂可有效地改良土壤酸化和降低水稻稻米Cd积累,施用2250 kg ·hm-2硅钙镁钾肥、钙镁磷肥和石灰分别增加土壤pH值0.62、0.65和0.86单位,减少交换性酸总量67%、69%和78%,降低糙米镉含量73%、68%和77%.施用2250 kg ·hm2钝化剂可使Cd轻度污染稻田上种植水稻糙米中ω(Cd)低于0.2 mg ·kg-1,达到国家食品安全标准;与对照比较,3种钝化剂均显著降低土壤中DTPA提取有效态镉含量,降低弱酸提取态(F1)和可还原态(F2) Cd含量,增加残渣态(F4) Cd含量;相关分析表明糙米Cd含量与土壤pH与交换性阳离子含量呈显著负相关,与DTPA-Cd、F1-Cd、F2-Cd和交换铝含量呈显著正相关.应用最小二乘路径模型分析了糙米Cd含量、Cd有效性和化学形态与土壤性质的关系,土壤交换性阳离子对糙米Cd含量、有效镉和水稻产量直接影响的路径系数分别为-0.566、-0.866和0.873,土壤pH主要通过直接影响有效镉而间接影响糙米镉含量.田间试验证明,这3种钝化剂是实现镉污染酸性水稻土水稻安全生产的有效技术,它们主要通过影响土壤交换性阳离子而直接影响土壤镉生物有效性,进而影响糙米中镉的积累,研究结果可为受污染耕地水稻安全生产和酸化土壤改良提供科学依据.  相似文献   

5.
原位钝化-低积累品种联合修复镉污染农田研究   总被引:2,自引:0,他引:2  
该研究在田间试验条件下,研究了低积累水稻品种与石灰、生物炭、生物有机肥以及多孔陶瓷纳米材料等钝化剂联合修复对镉污染农田中土壤有效态Cd含量、水稻糙米Cd含量以及水稻糙米产量的影响。研究结果表明:在土壤Cd背景值为0.327 mg/kg的轻度Cd污染农田中,无论是常规水稻品种还是低积累水稻品种,采用石灰、生物炭配施石灰、生物有机肥配施石灰、多孔陶瓷纳米材料以及多孔陶瓷纳米材料配施石灰5种钝化剂组合方式均可以提高土壤pH值,其中土壤中有效态Cd含量最大降低率为45.95%,水稻糙米Cd含量降低幅度为10.54%~53.85%,水稻糙米最大增产率为11.37%;低积累水稻品种与石灰、生物炭配施石灰、生物有机肥配施石灰、多孔陶瓷纳米材料以及多孔陶瓷纳米材料配施石灰的联合修复均可将水稻糙米Cd含量降低至国家安全标准以下(0.2 mg/kg)。多孔陶瓷纳米材料配施石灰可使土壤有效态Cd含量降低45.95%,结合低积累水稻品种联合修复可使水稻糙米Cd含量降至0.138 mg/kg,低积累水稻品种与石灰和多孔陶瓷纳米材料联合修复对轻度Cd污染农田土壤效果最明显。  相似文献   

6.
硅钙肥对水稻吸收铅、镉的影响研究   总被引:2,自引:0,他引:2  
通过盆栽试验,研究硅钙肥施用对铅(Pb)、镉(Cd)污染土壤上水稻生长、Pb、Cd吸收累积、硅浓度及土壤铅镉形态变化的影响。结果表明,硅钙肥施用显著增加水稻产量,与对照处理相比,水稻产量增加51.9%;硅钙肥施用后水稻茎秆、叶片、籽粒中Pb浓度及茎秆、籽粒中Cd浓度呈显著下降趋势,与重金属处理(M)相比,重金属+硅钙肥处理(MF)的水稻茎秆、叶片和籽粒中Pb浓度分别降低了50.9%,56.3%和24.3%,水稻茎秆和籽粒中Cd浓度则分别下降36.1%和60.4%;硅钙肥施用主要阻碍Pb由水稻根部向茎杆的转移,阻碍Cd由叶片向籽粒中的转移;硅钙肥施用增加了水稻各部位硅浓度,水稻地上部重金属浓度减少的原因可能是硅的沉积,各部位硅的浓度和重金属浓度呈现明显的负相关。水稻种植后,土壤Pb、Cd浓度都有一定程度的降低,硅钙肥施用未能明显促进土壤重金属从酸可溶态和可还原态向可氧化态和残渣态的转化。研究结果表明,在Pb、Cd污染的土壤上种植水稻时,可通过施用硅钙肥来降低稻谷中Pb、Cd的浓度从而降低铅镉污染的风险。  相似文献   

7.
水稻品种及典型土壤改良措施对稻米吸收镉的影响   总被引:20,自引:11,他引:9       下载免费PDF全文
王美娥  彭驰  陈卫平 《环境科学》2015,36(11):4283-4290
水稻镉污染是我国当前重要的农产品安全问题,湖南攸县"镉大米"事件造成了严重的社会影响.针对南方酸性土壤镉污染特征,进行了"镉大米"治理技术研究.结果表明,当地主栽水稻品种株两优06的稻米Cd含量在大同桥和网岭镇的平均值分别为0.167 mg·kg-1和0.127 mg·kg-1,为其它品种的20%左右;石灰和矿物肥处理能够使稻米Cd含量降低到对照的20%~30%,覆膜处理使稻米Cd含量与对照相比降低约50%,而覆膜+生物炭+硅肥叶面肥处理能够降低80%左右,硅肥叶面肥单独施用及叶面肥和追肥配合施用能够显著降低稻米中的Cd含量90%以上;BCR法分析土壤Cd形态结果发现,供试大田土壤中Cd的弱酸可提取态比例较高,绝大多数样品达到55%以上,而施用石灰能够显著降低土壤中的弱酸可提取态和可还原态比例,增加残渣态比例,变化幅度达到20%左右;土壤Cd含量与p H值是影响稻米对Cd吸收的重要因素.  相似文献   

8.
为从源头保障农产品质量安全,做好农田土壤镉污染修复,在镉污染农田上研究施加TX土壤调理剂、NL土壤调理剂、生物炭、石灰、硅肥5种钝化剂对土壤pH、有机质、Cd有效态含量、Cd不同形态的影响,并探讨钝化剂对4个不同水稻品种的产量以及水稻各器官吸收Cd的影响,筛选降解Cd效果较优的钝化剂和籽粒吸收Cd较少的水稻品种。结果表明:与对照处理相比,施加TX、NL土壤调理剂、生物炭、石灰、硅肥处理土壤中Cd有效态含量分别降低了59.4%、29.9%、22.8%、22.4%、54.4%。施加钝化剂降低了土壤中弱酸提取态和可还原态含量,增加了可氧化态和残渣态含量。其中,TX土壤调理剂处理的弱酸提取态占比降幅最大为11.9%,残渣态占比增幅最大为15.4%。施加钝化剂可提高水稻产量和抑制水稻各器官(根、茎、籽粒)对Cd的积累,其中施加TX土壤调理剂的效果最优,淮稻5号、扬粳805、扬粳103、南粳9108的产量分别提高了14.2%、18.6%、9.2%、29.2%,籽粒中Cd含量分别显著降低了80.5%、82.8%、65.4%、55.6%。对照处理中,淮稻5号、扬粳805、扬粳103、南粳9108籽粒Cd含量分别为0.836,0.853,1.047,1.22 mg/kg。只有种植淮稻5号和扬粳805同时配施TX土壤调理剂处理,籽粒Cd含量分别为0.163,0.147 mg/kg,符合GB 2762—2017《食品安全国家标准食品中污染物限量》。推荐淮稻5号和扬粳805品种为适应于苏中地区的重金属低积累水稻品种,再结合施用合适钝化剂可在重金属Cd中轻度污染土壤上推广应用以保障农产品安全。  相似文献   

9.
秸秆还田对水稻镉积累及其亚细胞分布的影响   总被引:10,自引:3,他引:7       下载免费PDF全文
镉(Cd)是人类一级致癌物,大米食用是以大米为主食人群摄入Cd的主要途径.秸秆还田是秸秆处理中主要方式,在Cd污染稻田被广泛应用,其对水稻Cd吸收及水稻体内Cd的分布产生的影响不可忽视.本研究选用Cd水稻土,通过盆栽和大田试验分析了不同的秸秆还田用量(0.0%、1.0%、2.5%和5.0%)对Cd的亚细胞分布以及在水稻籽粒中积累的影响.结果表明水稻根细胞中的Cd主要分布在细胞壁中,占总Cd的86%~95%,茎叶细胞的细胞壁与可溶部分中的Cd含量相当,分别占总Cd的30%~51%和35%~61%.秸秆按1%和2.5%比例还田能显著提高根中Cd含量,以及细胞壁中Cd含量及其分配比例,并降低水稻体内Cd由根向茎叶转运;但5%的秸秆还田,分蘖期根中Cd含量和细胞壁中Cd含量显著降低,Cd由根向茎叶转运系数提高,灌浆期的根中Cd含量和细胞壁中Cd含量均显著提高,转运系数没有显著变化.大田试验前茬的水稻秸秆和油菜秸秆中Cd含量均较高,分别是0.49 mg·kg~(-1)和0.67 mg·kg~(-1);油菜秸秆单独还田或与石灰一起还田均没有显著影响水稻糙米或秸秆中Cd的积累;水稻秸秆单独还田也没有显著改变水稻糙米或秸秆中Cd的积累,但与石灰一起还田时能显著降低糙米和秸秆中的Cd积累;生物炭添加能显著降低水稻体内的Cd积累,且与石灰一起添加降Cd效果更显著.因此,当用Cd污染稻田前茬所产水稻秸秆还田时,建议与石灰一起添加可达到显著降Cd的效果.该研究将为Cd污染稻田的水稻安全生产与秸秆循环利用提供理论与实践指导.  相似文献   

10.
陈娟  张严  郭彦  张可懿  任杰  杜平 《环境科学研究》2022,35(8):1893-1901
为探讨负载磷酸盐生物质炭材料对重金属复合污染土壤中共存重金属的稳定化效果和迁移转化特征,以玉米秸秆和小麦秸秆为原材料,负载磷酸盐后在600 °C下无氧热解制备两种生物质炭材料,并将其用于重金属复合污染土壤中进行稳定化批处理试验. 结果表明:负载磷酸盐的玉米秸秆和小麦秸秆生物质炭材料可通过增加土壤中无定形铁、铝氧化物的含量而促进其对Cd的吸附,且负载磷酸盐后玉米秸秆生物质炭材料对土壤中无定形氧化物含量的增幅和游离态氧化物含量的降幅高于小麦秸秆生物质炭;同时,两种生物质炭材料均显著提高了土壤铁的活化度,进而有效控制了土壤重金属的生物有效性. 添加不同比例(如5%、10%和15%)的负载磷酸盐生物质炭均可降低土壤中Pb、Cd、Zn和Cu的迁移风险,并促进Pb的酸可提取态、铁锰结合态向有机结合态和残渣态转化,以及Cd、Zn和Cu的酸可提取态向残渣态转化. 两种负载磷酸盐生物质炭材料均可有效降低重金属的浸出浓度,10%及以上的添加量均可使Pb的浸出浓度降低98%以上. 15%的负载磷酸盐玉米秸秆生物质炭可使Cd和Zn的浸出浓度分别降低89%和47%,而15%的负载磷酸盐小麦秸秆生物质炭可使Cu的浸出浓度降低56%. 研究显示,施用10%~15%的负载磷酸盐生物质炭材料可显著降低重金属复合污染土壤中Pb和Cd的潜在环境风险,对矿区重金属污染土壤的安全利用具有参考和指导意义.   相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

13.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

18.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

19.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

20.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号