首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
Xonotlite was synthesized and tested for phosphate removal and recovery from synthetic solution in a batch mode. The e ects of pH, initial calcium concentration, bicarbonate concentration on phosphate removal through crystallization were examined. The morphology and X-ray di raction (XRD) pattern of xonotlite before and after crystallization confirmed the formation of crystalline hydroxyapatite. The results indicated that the crystallization product had a very high P content (> 10%), which is comparable to phosphate rock at the dosage of 50–200 mg xonotlite per liter, with a maximum P content of 16.7%. The kinetics of phosphate removal followed the second-order reaction equation. The phosphate removal ability increased with increasing pH. The precipitation of calcium phosphate took place when pH was higher than 7.2, whereas the crystallization occurred at pH 6.0. A high calcium concentration could promote the removal of phosphate via crystallization, while a high bicarbonate concentration also enhanced phosphate removal, through that the pH was increased and thus induced the precipitation process. When xonotlite was used to remove phosphate from wastewater, the removal e ciency could reach 91.3% after 24 h reaction, with removal capacity 137 mg/g. The results indicated that xonotlite might be used as an e ective crystal seed for the removal and recovery of phosphate from aqueous solution.  相似文献   

2.
Effect of humic substances on the precipitation of calcium phosphate   总被引:2,自引:0,他引:2  
For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0, the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.  相似文献   

3.
The feasibility of struvite recovery at low (12.5 mg/L) and high (120 mg[L) phosphorus concentrations was studied by constructing a novel fluidized bed reactor with cones (FBRwc) and without cones (FBRwoc). The crystallization process was continuously operated for 133 days under different hydraulic retention times (HRT = 1-10 hr), pH (7.5-10), and molar ratios of Mg/P (0.75-1.75), N/P (1-10) and Ca/Mg (0-2). The optimum operating conditions of HRT, pH, Mg/P and N/P molar ratios were found to be 2 hr, 9, 1.25, and 7.5, respectively. Under these optimum conditions, the phosphorus precipitation efficiencies of FBRwc were 93% for low and 98% for high phosphorus influent; however, the efficiencies were 78% and 81% for FBRwoc, respectively. Due to crystal losses at each junction (17%-31%), the crystal recovery efficiency of FBRwoc was relatively low (47%-65%) for both influent concentrations. However, the losses were minimal in FBRwc, which showed 75% and 92% crystal recovery for low and high phosphorus concentrations, respectively. At low calcium concentration, crystal chemical analysis showed the product to be pure struvite (〉 99%). The scanning electron microscope and X-ray diffraction results further confirmed that the crystal recovered from FBRwc contained pure struvite, which could be considered a high quality fertilizer. Except HRT, all parameters (pH, Mg/P, N/P and Ca/Mg) were found to be influencing factors for FBRwc performance. Overall, inserting cones in each part of the reactor played a significant role in enhancing struvite recovery from a wide range of phosphorus-containing wastewater.  相似文献   

4.
Declining worldwide phosphate rock reserves has driven a growing interest in exploration of alternative phosphate supplies. This study involved phosphorus recovery from swine wastewater through precipitation of struvite, a valuable slow-release fertiliser. The economic feasibility of this process is highly dependent on the cost of magnesium source. Two different magnesium sources were used for phosphorus recovery: pure magnesium chloride and nanofiltration(NF) saline water retentate. The paper f...  相似文献   

5.
Fluoride removal by traditional precipitation generates huge amounts of a water-rich sludge with low quality, which has no commercial or industrial value. The present study evaluated the feasibility of recovering fluoride as low water content cryolite from industrial fluoride-containing wastewater. A novel pilot-scale reaction-separation integrated reactor was designed. The results showed that the seed retention time in the reactor was prolonged to strengthen the induced crystallization process. The particle size of cryolite increased with increasing seed retention time, which decreased the water content. The recovery rate of cryolite was above 75% under an influent fluoride concentration of 3500 mg/L, a reaction temperature of 50℃, and an influent flow of 40 L/hr. The cryolite products that precipitated from the reactor were small in volume, large in particle size, low in water content, high in crystal purity, and recyclable.  相似文献   

6.
Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca-Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca-Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca-Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid-liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca-Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca-Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca-Mg/biochar were in the order of Ca-Mg/B600 > Ca-Mg/B450 > Ca-Mg/B300. Results revealed that postsorption Ca-Mg/biochar can continually release P and is more suitable for an acid environment.  相似文献   

7.
Removal of phosphate from wastewater using alkaline residue   总被引:2,自引:0,他引:2  
Alkaline residue(AR) was found to be an efficient adsorbent for phosphate removal from wastewater. The kinetic and equilibrium of phosphate removal were investigated to evaluate the performance of modified alkaline residue. After treatment by NaOH(AR-NaOH), removal performance was significantly improved, while removal performance was almost completely lost after treatment by HCl(AR-HCl). The kinetics of the removal process by all adsorbents was well characterized by the pseudo second-order model. The Langmuir model exhibited the best correlation for AR-HCl, while AR was effectively described by Freundlich model. Both models were well fitted to AR-NaOH. The maximum adsorption capacities calculated from Langmuir equation were in following manner: AR-NaOH AR AR-HCl. Phosphate removal by alkaline residue was pH dependent process. Mechanisms for phosphate removal mainly involved adsorption and precipitation, varied with equilibrium pH of solution. For AR-HCl, the acid equilibrium pH( 6.0) was unfavorable for the formation of Ca-P precipitate, with adsorption as the key mechanism for phosphate removal. In contrast, for AR and ARNaOH, precipitation was the dominant mechanism for phosphate removal, due to the incrase on pH( 8.0) after phosphate removal. The results of both XRD and SEM analysis confirmed CaHPO4·2H2O formation after phosphate removal by AR and AR-NaOH.  相似文献   

8.
Biomineralization has become a research focus in wastewater treatment due to its much lower costs compared to traditional methods. However, the low sodium chloride (NaCl)-tolerance of bacteria limits applications to only water with low NaCl concentrations. Here, calcium ions in hypersaline wastewater (10% NaCl) were precipitated by free and immobilized Halovibrio mesolongii HMY2 bacteria and the differences between them were determined. The results show that calcium ions can be transformed into several types of calcium carbonate with a range of morphologies, abundant organic functional groups (C-H, C-O-C, C=O, etc), protein secondary structures (β-sheet, α-helix, 310 helix, and β-turn), P=O and S-H indicated by P2p and S2p, and more negative δ13CPDB (‰) values (-16.8‰ to -18.4‰). The optimal conditions for the immobilized bacteria were determined by doing experiments with six factors and five levels and using response surface method. Under the action of two groups of immobilized bacteria prepared under the optimal conditions, by the 10th day, Ca2+ ion precipitation ratios had increased to 79%-89% and 80%-88% with changes in magnesium ion cencentrations. Magnesium ions can significantly inhibit the calcium ion precipitation, and this inhibitory effect can be decreased under the action of immobilized bacteria. Minerals induced by immobilized bacteria always aggregated together, had higher contents of Mg, P, and S, lower stable carbon isotope values and less well-developed protein secondary structures. This study demonstrates an economic and eco-friendly method for recycling calcium ions in hypersaline wastewater, providing an easy step in the process of desalination.  相似文献   

9.
Shortage in phosphorus(P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar(Ca–Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca–Mg/biochar was rich in organic functional groups and in Ca O and Mg O nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca–Mg/biochar could be accelerated by nano-Ca O and nano-Mg O particles and reached equilibrium after 360 min.The process was endothermic, spontaneous, and showed an increase in the disorder of the solid–liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical p H level of biogas fermentation liquid. The nano-Ca O and nano-Mg O particles of Ca–Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca–Mg/biochar were in the order of Ca–Mg/B600 Ca–Mg/B450 Ca–Mg/B300. Results revealed that postsorption Ca–Mg/biochar can continually release P and is more suitable for an acid environment.  相似文献   

10.
The feasibility of copper recovery by induced crystallization in a long period(174 days) was investigated in a seeded fluidized bed reactor(FBR). The process was divided into 3 periods according to different influent conditions, and the period III was separated into III-a and IIIb due to the adjustment of the molar ratio of CO_3~(2-)concentration to copper concentration([CT]/[Cu~(2+)]). The removal efficiency could exceed 95% and the average effluent copper concentration decreased to 3.0 mg/L. The mean particle size of seed grains with copper crystals coating on, raised to 0.36 mm from initial 0.18 mm. During period III-a, the supersaturation exceeded 2.88 × 104, the removal efficiency decreased to 60%–80% and the particle size dropped to 0.30 mm, due to the generation of fines by homogeneous crystallization and seeds breaking. And the morphology of the crystals on the seed grains changed from rod-like to spherical which lead to the particle size decreasing. In period III-b,the supersaturation was modified by adjusting the molar ratio of [CT]/[Cu2+] to 1.2 from 2.The efficiency was back to 95% and the mean particle size grew to 0.36 mm at the end of IIIb, the crystals coating on the seeds turned back to rod-like products of good stability. This study illustrated that the copper salt crystal could keep on growing on the seed grains for over 150 days, the feasibility and controllability of copper recovery by induced crystallization process in FBR were satisfactory, even under the dramatic changes in influent conditions.  相似文献   

11.
为提高磷酸钙结晶产物回收价值和低磷适应性,以羟基磷酸钙(HAP)为晶种,诱导Ca-P结晶回收模拟二级出水(初始PO4-P浓度1.0mg/L)中的磷,对比了诱导结晶与均相结晶的磷回收效果,考察了Ca/P比和晶种投加量对磷回收的影响,并结合产物SEM、EDS、XRD和FTIR分析,探讨了HAP诱导Ca-P结晶机制.结果表明, HAP诱导Ca-P结晶在避免晶种材料对结晶产物纯度和品质影响的同时,还具有低磷适应性强和启动快速的优势; Ca-P结晶模式包括构晶离子在HAP表面的逐层结晶模式和在HAP颗粒空隙间的晶桥模式.实验条件下,模拟二级出水磷回收率可达80%以上,产物包括HAP及其前体物ACP(无定形态磷酸钙)和OCP(磷酸八钙). Ca-P结晶过程伴随发生CaCO3结晶,干扰磷结晶回收.研究成果为低磷污水磷回收率和回收产物品质的提升提供了依据.  相似文献   

12.
磷酸铵镁沉淀法处理制药废水试验研究   总被引:2,自引:0,他引:2  
制药废水由于制药原料化学纯度较高,废水中常含高浓度氮、磷污染物,采用磷酸铵镁沉淀法可同时回收两种元素不仅可以有效同时去除两种污染物,而且可以得到附加值较高的磷酸铵镁盐,因此本研究用磷酸铵镁化学沉淀法小试实验处理制药废水,讨论了磷酸铵镁沉淀法pH、晶种、初始浓度对P0^3- 4和NI-14同时去除的影响。试验结果表明:投加镁盐,在pH=9.5的条件下,可去除90%PO^3- 4,同时可去除15%NH4,在Po^-3 4和NH4浓度较低时,投加晶种可使Po;一去除率提高20%,该法渴望为制药废水处理提供创造经济效益的经验。  相似文献   

13.
污水处理中磷回收理论与技术   总被引:14,自引:1,他引:13  
由于磷矿的开采和磷在自然界中近乎单向循环。磷资源日益枯竭。污水中含有大量的磷。我国污水排放中的磷量相当于磷矿产量的37.5%,经过处理回收可以转变为磷资源。又可以保护环境。当前磷的回收技术有沉积法、结晶法、土地利用等多种形式,除了土地利用外,其他技术都处于试验探索阶段,需要进一步开发研究。磷酸盐是磷回收的主要形式。鸟粪石和磷酸钙分别适合用作肥料和工业原料。  相似文献   

14.
三种有机酸对磷酸钙法回收模拟养猪场污水中磷的影响   总被引:1,自引:0,他引:1  
采用磷酸钙(Calcium Phosphate,CP)结晶法回收模拟养猪场污水中的磷,考察了不同pH值条件下,3种有机酸(柠檬酸、丁二酸和乙酸)对模拟污水中磷去除率的影响,并利用扫描电镜和X射线衍射仪对结晶产物进行了表征.结果表明,CP结晶反应的最佳pH值约为9.5.在相同pH值条件下,柠檬酸对CP结晶反应中磷的去除效率和速率均有显著影响,高浓度柠檬酸能够完全抑制CP结晶反应,导致磷的去除率小于5%.相比之下,丁二酸和乙酸对磷的去除效率和速率影响不明显.3种有机酸对CP结晶产物的形状没有明显影响,所得产物均呈不定形的块状,但产物体积大小会随有机酸浓度升高而明显减小.不同浓度丁二酸和乙酸存在条件下均能得到羟基磷酸钙(Hydroxylapatite,HAP)晶体,但柠檬酸的存在会影响所得产物晶形.  相似文献   

15.
以磷酸钙盐的形式从污水处理厂回收磷的研究   总被引:7,自引:0,他引:7  
磷是一种不可再生、难以替代的有限自然资源.磷的可持续利用问题越来越受到世界各国学者与政府的高度重视.近年来,从污水厂回收磷在世界各国逐渐兴起,而我国在这方面的研究还处于起步阶段,尤其是以磷酸钙盐的形式回收磷的相关研究还未见报道.以磷酸钙盐形式回收废水中的磷,优化磷回收过程相关工艺控制条件.结果表明,pH值和Ca2 浓度是磷酸钙盐回收的关键因素,最优值分别为10和6.68,磷回收率达到90%.  相似文献   

16.
选择有代表性的3种来源废水(养猪场废水厌氧消化液、鸡粪废水厌氧消化液和污泥厌氧消化液),利用Mg O与白云石石灰作为药剂进行磷回收试验,研究不同药剂、药剂投加量和反应时间下3种来源废水中磷的回收效果,通过动力学方程模拟2种药剂的除磷速率,并采用XRD(X射线衍射)、SEM(扫描电镜)对沉淀产物进行表征.结果表明:投加2种药剂均可实现磷的有效去除与回收,反应沉淀物中含有MAP(磷酸铵镁)和Ca CO3,Mg O的最佳投加量为200 mg/L,当反应时间为4 h时,PO43--P去除率达85.0%以上;白云石石灰的最佳投加量为500 mg/L,当反应时间为24 h时,PO43--P去除率达80.0%以上.投加白云石石灰的反应速率较慢,并且反应沉淀物中含有更多的Ca CO3.以处理1 m3原水为例,Mg O药剂成本为0.80元,白云石石灰药剂成本为0.25元,显示白云石石灰经济成本更低,是较为理想的磷回收药剂.  相似文献   

17.
载镁天然沸石复合材料对污水中氮磷的同步回收   总被引:4,自引:3,他引:1  
成雪君  王学江  王浩  张志昊  赵建夫 《环境科学》2017,38(12):5139-5145
采用载镁天然沸石为沉淀剂,以鸟粪石的形式回收模拟污水中的营养物质,考察了投加量、溶液pH、反应时间和共存Ca~(2+)对回收过程的影响,并利用FTIR、XRD、BET和SEM等手段对回收沉淀产物进行了化学组分和表面形貌分析,以揭示其回收机制.结果表明当材料投加量为0.4 g·L~(-1),溶液初始pH为7,反应时间为2 h时,载镁天然沸石对溶液中磷酸盐和氨氮的回收性能最佳,最大吸附量分别高达119.2 mg·g~(-1)和48.5 mg·g~(-1).载镁天然沸石对溶液中磷酸盐和氨氮的回收过程均符合拟二级动力学模型(R~20.99).载镁天然沸石对污水中营养物质的回收机制有鸟粪石化学沉淀、物理吸附、离子交换和静电吸附等,其中以鸟粪石沉淀法为主.共存Ca~(2+)会干扰载镁沸石对溶液中氮磷的同步回收,导致回收的沉淀组分除鸟粪石晶体外,还会存在部分磷酸钙等副产物.  相似文献   

18.
化学沉淀法回收污泥中氮磷的影响因素研究   总被引:1,自引:0,他引:1  
污水处理厂污泥上清液中富集着较高浓度溶解性的氮磷,将此部分氮磷形成磷酸盐沉淀(如磷酸氨镁、磷酸钙、磷酸铝等)加以回收利用,受到各种因素的影响.文章以正交试验得出的影响因素为基础,深入研究了pH、初始PO43--p的浓度、Mg/P和反应时间对某污水厂污泥上清液中磷酸氨镁沉淀法回收氮磷的影响.结果表明:pH是影响污泥上清液...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号