首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
The removal of algal organic matter(AOM) is a growing concern for the water treatment industry worldwide. The current study investigates coagulation of non-proteinaceous AOM(AOM after protein separation), which has been minimally explored compared with proteinaceous fractions. Jar tests with either aluminum sulphate(alum) or polyaluminium chloride(PACl) were performed at doses of 0.2–3.0 mg Al per 1 mg of dissolved organic carbon in the p H range 3.0–10.5. Additionally, non-proteinaceous matter was characterized in terms of charge, molecular weight and carbohydrate content to assess the treatability of its different fractions. Results showed that only up to 25% of non-proteinaceous AOM can be removed by coagulation under optimized conditions. The optimal coagulation p H(6.6–8.0 for alum and 7.5–9.0 for PACl) and low surface charge of the removed fraction indicated that the prevailing coagulation mechanism was adsorption of non-proteinaceous matter onto aluminum hydroxide precipitates. The lowest residual Al concentrations were achieved in very narrow p H ranges, especially in the case of PACl. High-molecular weight saccharidelike organics were amenable to coagulation compared to low-molecular weight( 3 k Da)substances. Their high content in non-proteinaceous matter(about 67%) was the reason for its low removal. Comparison with our previous studies implies that proteinaceous and nonproteinaceous matter is coagulated under different conditions due to the employment of diverse coagulation mechanisms. The study suggests that further research should focus on the removal of low-molecular weight AOM, reluctant to coagulate, with other treatment processes to minimize its detrimental effect on water safety.  相似文献   

2.
Accumulation of organic contaminants on fullerene nanoparticles (nC60) may significantly affect the risks of C60 in the environment. The objective of this study was to further understand how the interplay of nC60 formation routes and humic acid modification affects contaminant adsorption of nC60. Specifically, adsorption of 1,2,4,5-tetrachlorobenzene (a model nonionic, hydrophobic organic contaminant) on nC60 was greatly affected by nC60 formation route – the formation route significantly affected the aggregation properties of nC60, thus affecting the available surface area and the extent of adsorption via the pore-filling mechanism. Depending on whether nC60 was formed via the “top-down” route (i.e., sonicating C60 powder in aqueous solution) or “bottom-up” route (i.e., phase transfer from an organic solvent) and the type of solvent involved (toluene versus tetrahydrofuran), modification of nC60 with Suwannee River humic acid (SRHA) could either enhance or inhibit the adsorption affinity of nC60. The net effect depended on the specific way in which SRHA interacted with C60 monomers and/or C60 aggregates of different sizes and morphology, which determined the relative importance of enhanced adsorption from SRHA modification via preventing C60 aggregation and inhibited adsorption through blocking available adsorption sites. The findings further demonstrate the complex mechanisms controlling interactions between nC60 and organic contaminants, and may have significant implications for the life-cycle analysis and risk assessment of C60.  相似文献   

3.
采用AlCl3溶液和Na2CO3粉末在不同温度下制备了不同浓度的聚合氯化铝(PACl). 以选定的中等浓度、高Al13含量的PACl为原液,研究了Al13与硫酸盐沉淀反应过程中SO4/Al摩尔比、反应体系起始总铝浓度的影响以及Al13硫酸盐与Ba(NO3)2置换反应过程中的Ba/SO4摩尔比、超声、温度等因素的影响. 实验结果表明,在制备温度为50℃条件下,浓度在0.4~0.6 mol/L范围的PACl含有较高的Al13. 沉淀分离反应的最佳SO4/Al摩尔比为0.6∶1;生成的 Al13硫酸盐沉淀物为正四面体状晶体. 在Al13硫酸盐与Ba(NO3)2溶液置换反应过程中,Ba/SO4的最佳摩尔比为1∶1,反应温度及超声作用对置换反应的影响较小;提高Ba(NO3)2的起始浓度可以得到相应较高浓度的纯化Al13溶液. 所得Al13纯度的统计平均值为92.1%.  相似文献   

4.
Effluent organic matter (EfOM) is the major cause of fouling in the low pressure membranes process for wastewater reuse. Coagulation and oxidation of biological wastewater treatment effluent have been applied for the fouling control of microfiltration membranes. However, the change in EfOM structure by pre-treatments has not been clearly identified. The changes of EfOM characteristics induced by coagulation and ozonation were investigated through size exclusion chromatography, UV/Vis spectrophotometry, fluorescence spectrophotometry and titrimetric analysis to identify the mechanisms in the reduction of ultrafiltration (UF) membrane fouling. The results indicated that reduction of flux decline by coagulation was due to modified characteristics of dissolved organic carbon (DOC) content. Total concentration of DOC was not reduced by ozonation. However, the mass fraction of the molecules with molecular weight larger than 5 kDa, fluorescence intensity, aromaticity, highly condensed chromophores, average molecular weight and soluble microbial byproducts decreased greatly after ozonation. These results indicated that EfOM was partially oxidized by ozonation to low molecular weight, highly charged compounds with abundant electron- withdrawing functional groups, which are favourable for alleviating UF membrane flux decline.  相似文献   

5.
聚合氯化铝中纳米Al13形态的分离纯化及形态表征   总被引:11,自引:2,他引:11  
采用超滤法和层析法分离纯化聚合氯化铝(PAC)中的Al13形态,并采用Al-Ferron逐时络合比色法、27Al-NMR、TEM和粒度测定仪对分离纯化所得的Al13形态进行了分析和表征.研究结果表明,超滤法分离纯化的效果受超滤膜的孔径及PAC浓度的影响,选择合适孔径的膜和PAC溶液浓度即可以获得高纯度的Al13,在层析法中则随着洗脱时间延长按分子的大小依次洗脱下来,因此截取中间组分即可得到Al13;Al-Ferron逐时络合比色法和27Al-NMR的分析结果表明,采用上述2种方法分离提纯得到的样品中Al13的含量分别可达到90%以上和100%.TEM和粒度测定结果表明,在B=2.5的PAC溶液中,Al13极少以Al12AlO4(OH)24(H2O)7+12的单体形态存在,而是呈两维结构的线性和枝状的聚集体,Al12AlO4(OH)24(H2O)7+12的聚集体尺寸通常在几十至几百nm.  相似文献   

6.
2017年9月4日~2018年1月19日期间分别在关中地区的5个主要城市西安(XA),渭南(WN),铜川(TCH),宝鸡(BJ),咸阳(XY)设置采样点进行PM2.5,PM10颗粒物手工采样观测,采用热光透射法(TOT)分析碳组分,最小值法估算二次有机碳(SOC)浓度,结果显示PM2.5与PM10中SOC平均浓度分别为(7.44±5.54),(9.62±7.49)μg/m3,一次有机碳(POC)平均浓度分别为(7.04±2.59),(9.33±4.33)μg/m3,不同粒径颗粒物中SOC各点位的浓度值分布表现基本相同为XY > XA > WN > BJ > TCH.PM2.5中SOC含量为8.76%,OC占比为48.03%,PM10含量为6.28%,OC占比为48.09%,季节分布均呈现为秋季低冬季高,关中地区SOC污染严重.后向轨迹聚类分析结果显示污染气团传输主要是关中地区局部污染和西北,东北方向传输,其中局部污染轨迹的数量占比较多,浓度较高.低空传输与近地面风向风速及污染物分布存在差异,结合关中地区盆地地形,静风频率高,边界层低等多种因素造成颗粒物中SOC浓度较高,其中BJ点位易受到东北气团的污染物传输累积.  相似文献   

7.
采用密闭培养实验装置于室温(25℃左右)及pH为7.5条件下,对西湖底泥中有机质完全降解及转化为CO  相似文献   

8.
采用密闭培养实验装置于室温(25℃左右)及pH为75条件下,对西湖底泥中有机质完全降解及转化为CO2和CH4的速率进行了模拟研究.结果表明,在西湖湖水现有供氧水平(50—86mg(O2)/L)条件下,底泥中有机质完全降解的速率最为缓慢,培养期间(42天)平均只有072mg(C)/(kg·d).当湖水供氧水平进一步上升(86→120→160mg(O2)/L),CO2释放速率增加,最大值可达到87mg(C)/(kg·周);当湖水供氧水平下降(86→0mg(O2)/L),CH4释放速率加快,最大值可达到46mg(C)/(kg·周).  相似文献   

9.
本研究以阳极氧化法结合电化学沉积法成功制备的具有高度整齐有序纳米管结构的Ag/TiO2纳米管阵列(Ag/TNTAs)为阳极,碳/聚四氟乙烯为阴极构建光电催化(PEC)体系.并探究其光电催化降解甲基橙(MO)效能,结果表明,Ag/TNTAs光电催化降解能力(68.2%)远高于光催化(18.9%)、电化学氧化(38.2%)和直接光解;另外在水质净化厂出水有机质(EfOM)参与的光电体系中,当EfOM的初始浓度小于或等于1.0mgC/L时,其对光电催化降解MO起到促进作用,其中当其浓度为0.4mgC/L时促进作用最为明显.而高浓度的EfOM则抑制光电催化活性.此研究表明光电催化体系能高效催化染料降解,且EfOM能在一定阈值范围内促进光电催化降解污染物.  相似文献   

10.
The distribution and source of the solvent-extractable organic and inorganic components in PM 2.5(aerodynamics equivalent diameter below 2.5 microns),and PM 10(aerodynamics equivalent diameter below 10 microns) fractions of airborne particles were studied weekly from September 2006 to August 2007 in Beijing.The extracted organic and inorganic compounds identified in both particle size ranges consisted of n-alkanes,PAHs(polycyclic aromatic hydrocarbons),fatty acids and water soluble ions.The potential emission sources of these organic compounds were reconciled by combining the values of n-alkane carbon preference index(CPI),%waxC n,selected diagnostic ratios of PAHs and principal component analysis in both size ranges.The mean cumulative concentrations of n-alkanes reached 1128.65ng/m3 in Beijing,74% of which(i.e.,831.7ng/m3) was in the PM 2.5 fraction,PAHs reached 136.45ng/m3(113.44ng/m3 or 83% in PM 2.5),and fatty acids reached 436.99ng/m3(324.41ng/m3 or 74% in PM 2.5),which resulted in overall enrichment in the fine particles.The average concentrations of SO42-,NO3-,and NH4+ were 21.3±15.2,6.1±1.8,12.5±6.1μg/m3 in PM 2.5,and 25.8±15.5,8.9±2.6,16.9±9.5μg/m3 in PM 10,respectively.These three secondary ions primarily existed as ammonium sulfate((NH4)2SO4),ammonium bisulfate(NH4HSO4) and ammonium nitrate(NH4NO3).The characteristic ratios of PAHs revealed that the primary sources of PAHs were coal combustion,followed by gasoline combustion.The ratios of stearic/palmitic acid indicated the major contribution of vehicle emissions to fatty acids in airborne particles.The major alkane sources were biogenic sources and fossil fuel combustion.The major sources of PAHs were vehicular emission and coal combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号