首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a “dynamic protection layer”, as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.  相似文献   

2.
Coupling coagulation and applied electric field is an efficient method to regulate cake layer porosity and hydrophilicity for alleviating ultrafiltration membrane (UF) fouling. However, the Al/Fe flocs aggregation behavior are induced from electric field and determine the cake layer structure, which has not been studied comparatively yet. Herein, the anti-fouling performance in an efficient electro-coagulation membrane reactor (ECMR, in which UF membrane modules are placed between electrodes) was investigated with Al/Fe anode and various electrochemical parameters from the viewpoint of regulating flocs aggregation. Both the cake layers formed from Al and Fe flocs under an electric field were more porous and hydrophilic in comparison with that formed without electric fields, resulting in an enhanced water flux under higher electric field strength. Comparing with Fe flocs, Al flocs had a faster growth rate and larger size, facilitating membrane pore block resistant, which was more pronounced in a higher current density. Furthermore, the cake layer formed from Al flocs was more porous than that formed from Fe flocs. Therefore, the anti-fouling performance of ECMR with Al anode was superior to that of ECMR with Fe anode. When the electric field strength increased from 0 to 10?V/cm, the normalized specific flux was improved from 71.2% to 89.4% for ECMR (Al) and from 48.1% to 70.1% for ECMR (Fe) at 30?min.  相似文献   

3.
To alleviate ultrafiltration(UF) membrane fouling, the pre-coagulation of poly-aluminum chloride(PACl) with the aid of chitosan(CTS) was conducted for synthetic humic acid–kaolin water treatment. Pre-coagulation of three molecular weights(MW) CTSs(50–190 kDa(CTSL), 190–310 kDa(CTSM) and 310–375 kDa(CTSH)) was optimized with slow-mixing speeds of 30, 60 and 90 r/min, respectively. The removal efficiency and floc properties as well as membrane fouling were analyzed, and were compared to results obtained by conventional coagulation with PACl. Results showed that variations in floc properties could be ascribed to the coagulation mechanisms of CTS_L/CTS_M/CTS_H at different slow-mixing speeds, resulting in reduced UF membrane fouling. Specifically, at the low speed of 30 r/min, all three CTS types produced flocs with similar properties, while CTSLresulted in the lowest removal efficiency and aggravated irreversible fouling. At the appropriate speed of 60 r/min, CTSMgenerated the most compact flocs with the combined effects of bridging and path mechanisms. The compact cake layer formed could alleviate irreversible fouling,which was beneficial for prolonging the operation of the UF membrane. At the high speed of90 r/min, CTSHformed fragile flocs and aggravated irreversible membrane fouling. We considered membrane fouling to be affected by floc properties and the resultant removal efficiency, which was governed by the MW of the CTS used and the slow-mixing speed applied as well.  相似文献   

4.
Coagulation–ultrafiltration(C–UF) is widely used for surface water treatment. With the removal of pollutants, the characteristics of organic matter change and affect the final treatment efficiency and the development of membrane fouling. In this study, we built a dynamic C–UF set-up to carry out the treatment of micro-polluted surface water, to investigate the characteristics of dissolved organic matter from different units. The influences of poly aluminum chloride and poly dimethyldiallylammonium chloride(PDMDAAC) on removal efficiency and membrane fouling were also investigated. Results showed that the dosage of PDMDAAC evidently increased the UV254 and dissolved organic carbon removal efficiencies,and thereby alleviated membrane fouling in the C–UF process. Most hydrophobic bases(HoB)and hydrophobic neutral fractions could be removed by coagulation. Similarly, UF was good at removing HoB compared to hydrophilic substances(HiS) and hydrophobic acid(HoA)fractions. HiS and HoA fractions with low molecule weight accumulated on the surface of the membrane, causing the increase of transmembrane pressure(TMP). Membrane fouling was mainly caused by a removable cake layer, and mechanical cleaning was an efficient way to decrease the TMP.  相似文献   

5.
A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately.  相似文献   

6.
Experimental and theoretical analysis were made on the natural humic acid removal and the membrane fouling of ultrafiltration (UF) with in-line coagulation. The results showed dissolved organic carbon (DOC) and UV254 removals by the UF with in-line coagulation at pH 7 were increased from 28% to 53% and 40% to 78% in comparison with direct UF treatment respectively. At the same time, the analysis of high performance liquid chromatography showed that UF with coagulation had significant improvement of removal of humic acid with molecular weights less than 6000 Da in particular. Compared to direct UF, the in-line coagulation UF also kept more constant permeate flux and very slight increase oftransmembrane pressure during a filtration circle. Two typical membrane fouling models were used by inducing two coefficients Kc and Kp corresponding to cake filtration model and pore narrowing model respectively. It was found that membrane fouling by pore-narrowing effect was effectively alleviated and that by cake-filtration was much decreased by in-line coagulation. Under the condition of coagulation prior to ultrafiltration at pH 7, the cake layer formed on the membrane surface became thicker, but the membrane filtration resistance was lower than that at pH 5 with the extension of operation time.  相似文献   

7.
Submerged membrane bioreactors(SMBR) are widely used in wastewater treatment. The permeability of a membrane declines rapidly because of the formation of a cake layer on the membrane surface. In this paper, a multiple staining protocol was conducted to probe the four major foulants in the cake layer formed on a filtration membrane. Fluorescent images of the foulants were obtained using a confocal laser scanning microscope(CLSM). The three dimensional structure of the cake layer was reconstructed, and the internal flow was calculated using computational fluid dynamics(CFD). Simulation results agreed well with the experimental data on the permeability of the cake layer during filtration and showed better accuracy than the calculation by Kozeny–Carman method. β-D-Glucopyranose polysaccharides and proteins are the two main foulants with relatively large volume fractions, while α-D-glucopyranose polysaccharides and nucleic acids have relatively large specific surface areas. The fast growth of β-D-glucopyranose polysaccharides in the volume fraction is mainly responsible for the increase in cake volume fraction and the decrease in permeability. The specific area, or the aggregation/dispersion of foulants, is less important to its permeability compared to its volume fraction.  相似文献   

8.
Structure properties of flocs (size, fractal dimension (Df), etc.) have a high impact on coagulation efficiency. In this work, the influences of three different additives (ferric salt (Fe), phosphate (P), and citric acid (CA)) on coagulation process/efficiency were investigated. Results showed that a small amount of extra Fe can facilitate the growth of Al flocs by providing more ‘active sites’. Although zeta potential and Df showed a limited change, the average floc size increased apparently and the increment was more obvious when Fe was added after the formation of the flocs. In contrast, P addition during the rapid mixing period will decrease the final average floc size, while the influence is less significant when P was added after the growth of the flocs. In terms of CA, a more striking negative effect on the growth ability of the flocs was observed compared to P. The strong complexing/coordination interactions between CA and aluminum hydroxide is the main reason behind the influence. CA also significantly decreased the Df value of the flocs compared to P, and Df showed a comparatively higher decrease when P or CA was added during the rapid mixing stage compared to the addition after the flocs formation. These results indicated that the addition of CA or P during the rapid mixing stage ‘inactivated’ or occupied more ‘active sites’ on the preliminarily formed Al NPs during the hydrolysis process, and therefore presented stronger impact on the morphology/size of the formed flocs.  相似文献   

9.
Five negatively charged organic compounds with different structures, sodium methane sulfonate (MS), sodium benzene sulfonate (BS), sodium 6-hydroxynaphthalene-2-sulfonate (NSS), sodium dodecyl sulfate (SDS), and sodium dodecyl benzene sulfonate (SDBS), were used to examine the fouling of an anion exchange membrane (AEM) in electrodialysis (ED), to explore the effect of molecular characteristics on the fouling behavior on the AEM and changes in the surface and electrochemical properties of the AEM. Results indicated that the fouling degree of the AEM by the different organics followed the order: SDBS?>?SDS?>?NSS?>?BS?>?MS. SDBS and SDS formed a dense fouling layer on the surface of the AEM, which was the main factor in the much more severe membrane fouling, and completely restricted the transmembrane ion migration. The other three organics caused fouling of the AEM by adsorption on the surface and /or accumulation in the interlayer of the AEM, and exhibited almost no influence on the transmembrane ion migration. It was also concluded that the organics with benzene rings caused more severe fouling of the AEM due to the stronger affinity interaction and steric effect between the organics and the AEM compared with organics with aliphatic chains.  相似文献   

10.
The effects of Ca2+ on membrane fouling and trace organic compounds (TrOCs) removal in an electric field-assisted microfiltration system were investigated in the presence of Na+ alone for comparison. In the electric field, negatively charged bovine serum albumin (BSA) migrated towards the anode far away from the membrane surface, resulting in a 42.9% transmembrane pressure (TMP) reduction in the presence of Na+ at 1.5 V. In contrast, because of the stronger charge shielding of Ca2+, the electrophoretic migration of BSA was limited and led to a neglectable effect of the electric field (1.5 V) on membrane fouling. However, under 3 V applied voltage, the synergistic effects of electrochemical oxidation and bridging interaction between Ca2+ and BSA promoted the formation of denser settleable flocs and a thinner porous cake layer, which alleviated membrane fouling with a 64.5% decrease in TMP and nearly 100% BSA removal. The TrOCs elimination increased with voltage and reached 29.4%–80.4% at 3 V. The electric field could prolong the contact between TrOCs and strong oxidants generated on the anode, which enhanced the TrOCs removal. However, a stronger charge shielding ability of Ca2+ weakened the electric field force and thus lowered the TrOCs removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号