首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
采用铁碳微电解-Fenton氧化联合工艺处理甲苯硝化废水,探讨了溶液pH值、铁炭投加量、铁炭比例、H2O2投加量和反应时间等因素对微电解-Fenton氧化处理硝化废水的影响规律,获得微电解-Fenton氧化处理硝化废水的最佳工艺条件:废水pH在3左右,铁炭投加量为0.6 g/L,Fe/C质量比为4∶1,反应时间为1.5h,微电解后H2O2投加量为20 ml/L,反应时间为1 h。硝化废水经微电解-Fenton氧化处理后,COD由29 146mg/L降至6 477 mg/L,COD去除率达77.8%,BOD5/COD由0提高到0.37左右,废水可生化性显著增强。  相似文献   

2.
利用铁碳微电解技术对含铜黄连素制药废水进行预处理,通过单因素试验确定了反应时间,铁粉和废碳投加量,pH等因素对处理效果的影响,并设计了回收金属铜的工艺流程.结果表明:采用铁碳微电解工艺处理初始Cu2+浓度约为20000mg/L,黄连素浓度为1 700~1 900mg/L的含铜黄连素制药废水,当废水pH为2.0~3.0,...  相似文献   

3.
为了解决霜脲氰农药废水难以直接生化降解的难题,采用铁碳微电解法对霜脲氰农药废水进行预处理,实验结果表明,废水初始pH值、铁碳比、铁碳填料投加量和反应时间对实验结果均产生直接影响.霜脲氰废水的最佳处理条件为:pH值为2,铁碳比为3∶1,投加量为1L废水280 g,反应时间80 min.COD去除率为47.95%,CN-去除率为39.75%,ρ(B)/ρ(C)达到0.20 ~ 0.25间,大大提高了霜脲氰废水的可生化性,表明铁碳微电解法可作为霜脲氰废水的预处理方法,为霜脲氰废水的预处理工艺提供新思路.  相似文献   

4.
铁碳微电解法去除石油废水中化学需氧量试验研究   总被引:1,自引:0,他引:1  
用铁碳微电解法处理石油开采废水中化学需氧量,探讨和分析了pH值、Fe/C比、铁碳投加量和反应时间对微电解处理效果的影响,实验结果表明铁碳微电解试剂的最佳条件为:pH值为3;铁屑投加量为50 g/L,铁碳质量比为1∶1,微电解反应时间为120 min,化学需氧量去除率最高可达39%.本实验优化了铁碳微电解法对石油开采废水预处理的最佳工艺条件,大大降低了石油废水预处理的成本和负荷,为石油废水消减化学需氧量的初步处理提供了理论基础和技术保障.  相似文献   

5.
化工产品5-氯水杨酸的工艺废水中有机物浓度较高,母液中有大量残留5-氯水杨酸钠。本文通过酸析-铁碳微电解耦合芬顿氧化处理该工艺废水,回收5-氯水杨酸,降低废水CODCr,提高其可生化性。首先考察了pH对酸析的影响,结果表明pH为1.5左右时,5-氯水杨酸和CODCr去除率分别达到了99.9%和92.7%。然后对铁碳微电解耦合芬顿氧化对废水处理的处理条件进行了优化,结果表明在废水pH值为3.2时,铁碳粉投加量为0.05%,反应时间120min,双氧水投加量为0.5%,反应120min,中和沉淀出水,其CODCr去除率可达55%左右,出水可进生化处理系统。  相似文献   

6.
以香精香料生产废水为实验对象,其COD浓度为58421mg/L,采用混凝沉淀-微电解-Fenton组合工艺对该废水进行预处理,研究废水pH、药剂投加量、反应时间等因素对废水COD去除的影响。结果表明:以5%FeCl_3为混凝剂,在p H=7,FeCl_3投加量为10mL/50mL,0.06%PAM投加量为0.25mL/50mL时,废水COD的去除率为20.1%;铁碳微电解-铁碳材料与废水比例为2∶1(w/v),pH为3~4,曝气反应时间150min时,COD的去除率为14.6%; p H为4~5,双氧水投加量0.4mL/100mL,Fenton反应5h时,去除率为36.6%。经过该组合工艺的处理,香精香料废水总COD去除率可达60%。  相似文献   

7.
制药废水中含有大量难生物降解的化学物质,其BOD5/COD值很低,可生化性差。故一般仅采用生化处理很难将其COD降低到排放标准,现采用铁碳微电解法并串联Fenton工艺对某制药厂废水进行预处理。以废水COD为指标并通过正交试验确定达到最佳处理效果的各因素的最佳组合条件为:前端的铁碳微电解反应时间为2.5 h,pH值为5,铁碳质量比1:2,Fe粉的投加量为120 g/L;后续Fenton反应投加30%H2O23 mL/L,FeSO.47H2O(100 g/L)400 mg/L,调节pH值为2,反应时间2.5 h,总去除率大于70%,为工业化应用做出铺垫。  相似文献   

8.
以多孔结构的多元合金为填料,采用微电解耦合催化氧化深度处理制药废水。研究了废水初始pH、微电解时间、填充率、H2O2投加量、催化氧化时间等对废水COD去除效果的影响。试验最佳工艺为:充氧曝气条件下,初始pH 2.5,微电解90 min,填充率1∶1,H2O2投加量2‰,催化氧化120 min,COD的平均去除率为52.25%,出水COD平均质量浓度为276 mg/L。  相似文献   

9.
利用厌氧反应装置,以腈纶废水为处理对象,通过2组试验,对比了微量金属(Co)投加前后废水中有机物降解情况、累积产气量、三维荧光光谱图以及微生物生长情况,研究了微量Co对腈纶废水厌氧处理效果的影响.结果表明:当Co的投加浓度〔以ρ(CoCl2)计〕为1.0 mg/L时,CODCr去除率达71.7%,累积产气量达到22.5 mL;当Co的投加浓度超过10 mg/L时,CODCr去除率为20%左右,累积产气量8.5 mL,未投加Co元素的空白对照组CODCr去除率为43.1%,累积产气量为10 mL.显示微量Co对腈纶废水厌氧生物降解具有一定的促进作用.   相似文献   

10.
铁炭微电解预处理聚酯树脂废水的试验研究   总被引:1,自引:0,他引:1  
采用铁炭微电解法预处理聚酯树脂废水研究,先进行正交试验,考察铁屑投加量、铁炭比和废水初始pH值对微电解效果的影响,接着在正交试验的基础上进行单因素试验,确定铁炭微电解法的最优工艺参数。试验结果表明:废水初始pH值对微电解处理聚酯树脂废水的影响最大,其次是铁屑投加量和铁炭比,最适工艺条件为:室温,废水初始pH值为2.0,铁屑投加量为100 g/L,铁炭质量比为1:1,曝气搅拌反应时间2.0 h。在此工艺条件下,BOD5/CODcr从0.17增加到0.33;此外,废水的CODcr去除率也可达到50.91%,这大大降低了后续生化处理的有机负荷。  相似文献   

11.
铁碳微电解处理染料污水的影响因素筛选与优化   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高铁碳微电解处理染料废水中CODCr去除率,将Plackett-Burman和Box-Behnken试验设计方法相结合应用于废水处理条件的筛选与优化. Plackett-Burman设计试验结果表明:铁碳比(体积比)、反应时间和曝气量是影响铁碳微电解处理染料废水CODCr去除率的3个关键性因素. Box-Behnken试验设计方法和三维响应面分析表明,铁碳微电解处理染料废水对CODCr去除率的最优化操作条件是铁碳比为3∶2、反应时间为120 min、曝气量为40 L/min. 在该优化条件下,当ρ(CODCr)在1 000~10 000 mg/L之间变化时,CODCr去除率的试验结果均落在模型预测结果的95%置信区间(75.5%~83.3%)内,说明模型能对铁碳微电解处理结果进行良好的预测,因此具有一定的可信度.   相似文献   

12.
采用微电解-芬顿氧化的组合工艺处理末端焦化废水,考察静态实验中微电解填料的铁碳比、过氧化氢添加方式及加入量、曝气量、反应时间、pH值等不同条件因素对COD去除率的影响情况,确定最佳条件是铁碳质量比是2.5∶1,分批加入过氧化氢,且加入量为0.25 mL/L,曝气量为1.25 L/min,pH值为3,反应时间140 min.最终实现将焦化废水COD的去除率达88%以上的目的.按静态实验的各因素条件进行动态实验,试验结果COD去除率可达87%以上,处理后℃OD质量浓度为为91 mg/L,达到排放标准.同时处理后焦化废水的颜色变淡.  相似文献   

13.
针对PCB络合废水络合铜浓度高、COD难达标、可生化性差等特点,在研究铜对铁碳微电解和Fenton氧化的催化作用的基础上,采用催化铁内电解-Fenton催化氧化联合自催化氧化还原技术对PCB络合废水进行处理,并通过混凝实验进一步去除废水中污染物。零价铁可置换出络合铜中的铜,单质铜与零价铁可形成Fe-Cu催化还原体系,对Fenton氧化也具有催化作用,可有效提高废水的处理效果。通过单因素实验确定各工艺最佳反应条件,实验结果表明,催化铁内电解最佳工艺条件为:p H=2,反应时间为60 min,铁屑投加量为5 g/L;Fenton催化氧化最佳工艺条件为:p H=3,反应时间为60 min,H2O2投加量为15 m L/L;混凝实验PAM最佳投加量为10 mg/L。最佳工艺条件下废水COD和总铜去除率分别可达到94.5%和98.8%,B/C由0.12提高到0.32,废水可生化性得到显著提高,为后续处理创造了条件。  相似文献   

14.
内电解-Fenton 氧化-膜生物反应器处理腈纶废水   总被引:7,自引:0,他引:7       下载免费PDF全文
采用内电解-Fenton 氧化-序批式膜生物反应器组合工艺处理腈纶废水.结果表明,在进水Ph 值为3、内电解反应时间2h、H2O2 浓度1500 mg/L、Fe2+浓度600mg/L、Fenton 反应时间2h 的条件下,内电解-Fenton 组合工艺对COD 的去除率为72%,进水COD 从1328mg/L下降到369mg/L,废水BOD5/COD 从0.14 上升到0.33,CN-从8.6mg/L 下降到0.215mg/L,提高了废水可生化性,为后续的生物处理创造了良好的条件.出水采用序批式膜生物反应器处理,在停留时间20h、缺氧搅拌90min、好氧120min 条件下,COD 去除率为80%,NH4+-N 去除率95%,BOD5 去除率92.6%,CN-去除率90.7%.最终出水COD、BOD5、NH4+-N、CN-、SS 分别为61,9.3,2.55,0.02,13mg/L  相似文献   

15.
采用电Fenton法预处理染料废水,对影响COD及色度去除率的各种因素,包括内电解反应的初始pH值、铁的投加量、铁炭投加比,Fenton试剂氧化处理过程中初始pH值、H2O2的投加量及投加方式、反应时间等进行了研究。结果表明,内电解反应的最佳条件为:pH值为3.0,铁的投加量为25g/L,Fe/C为1:1.3;Fenton试剂氧化处理染料废水的最佳条件为:H2O2投加量为30mmol/L,pH值为内电解出水pH值(pH值为4.0左右),反应时间为50min。COD去除率可达58%,色度去除率可达95%以上。  相似文献   

16.
采用铁碳微电解对红霉素医药废水生化二沉池出水进行深度处理。结果表明:最佳的铁碳微电解填料为PotenICME05,最佳反应初始pH为3.02,投加量为100 g/L,曝气量为60 L/h,曝气反应为90 min。在此条件下,废水COD、浊度和色度去除率分别为78.36%、90.23%和95.0%;BOD5/COD由初始0.095提高到0.367,可生化性得到显著改善。出水水质可以达到GB 21903—2008《发酵类制药工业水污染物排放标准》。  相似文献   

17.
采用铁碳微电解/Fenton试剂组合工艺对炼油碱渣废水混凝沉淀处理后出水,进行降解研究。实验结果表明:pH值为3,废水与铁碳填料的体积比为2∶1,微电解反应时间2 h,曝气的条件下,废水的处理效果最好,COD的去除率超过42.5%。Fenton试剂处理微电解反应出水的最佳操作条件是:pH值在2~3之间、反应时间2.5 h、Fe2+浓度为800 mg/L左右、H2O2浓度为0.25 mol/L,在此条件下,Fenton试剂处理微电解处理后的炼油碱渣废水COD平均去除率为63.8%以上,微电解/Fenton工艺对COD的总去除率在79.2%左右,可生化性由0.16提高到0.56。  相似文献   

18.
荧光增白剂生产废水不同预处理方法的比较   总被引:5,自引:0,他引:5       下载免费PDF全文
采用Fenton试剂氧化、O3氧化、曝气铁炭微电解3种方法对荧光增白剂生产废水进行了处理,考察了不同影响因素对3种处理方法处理效果的影响.结果表明,在H2O2投加量为0.13 mol/L、H2O2与Fe2+的物质的量比为20、pH值为5.0、反应时间为1.0h时, Fenton试剂氧化处理效果最好,CODCr去除率达到39.9%, BOD5/CODCr提高到0.51.在反应时间为70min(O3通入量为2.51 g/L)、pH值为9.2时,O3氧化处理效果较好,CODCr去除率达到36.7%,BOD5/CODCr提高到0.47.在铁炭质量比为1、反应时间为2.0h、pH值为2.5时,曝气铁炭微电解效果最好,CODCr去除率达到57.1%,BOD5/CODCr提高到0.45.3种预处理方法均可有效降解荧光增白剂生产废水中的有机物并且提高废水的可生化性,其中曝气铁炭微电解的效果最好,处理成本最低,可以应用于荧光增白剂生产废水的处理中.  相似文献   

19.
以Cr(VI)模拟废水为研究对象,研究了铁碳微电解过程中溶液p H、铁屑投加量、反应时间、铁碳质量比及溶液初始浓度等因素对处理过程的影响。在单因素实验基础上,以Cr(VI)去除率为考察目标,溶液初始p H、反应时间、铁炭质量比为考察因素,采用Box-Behnken响应曲面法优化了铁炭微电解处理Cr(VI)的工艺条件与拟合二次多项式回归数学模型,分析了3个独立变量之间的交互作用对Cr(VI)去除率的影响。结果表明,当最佳工艺条件p H为2,反应时间为60 min,m(Fe)∶m(C)为2.5时废水中Cr(VI)去除率可达97.85%,与模型预测值96.46%接近,证实了该模型的可靠性。  相似文献   

20.
采用微电解-Fenton氧化法对酸化压裂模拟废水进行处理,有效地降低了废水的COD,试验中考察了微电解反应进水pH值、铁碳质量比、反应时间以及联合Fenton工艺中废水的pH值、H2O2加入量、反应时间对COD去除率的影响。结果表明,微电解法工艺的优化条件:pH2.5左右,反应停留时间120min,铁碳质量比5∶1;Fenton反应的优化条件:微电解出水调pH4.0左右,反应时间75min,H2O(2质量分数为10%)加入量7.5ml/L,最终处理的出水COD去除率达64.8%,联合工艺的COD去除率比单一的微电解法提高了26.3%,为后续的处理创造了有利的条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号