首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
不同短程硝化系统中微生物群落结构的对比分析   总被引:4,自引:0,他引:4  
为探讨有机碳源对短程硝化系统中微生物群落结构的影响,采用构建克隆文库的方法对模拟无机城市生活污水和模拟实际城市生活污水短程硝化系统中的微生物群落结构进行对比分析.实验结果表明,变形菌门(Proteobacteria)和未培养菌(uncultured bacterium)是两系统中的优势菌群.两系统中的菌群结构存在差异,但优势菌群及其所占比例相似.两系统中的主要脱氮菌类群也相似,但由于有机碳源浓度的不同其菌属及比例有所差异.无机短程硝化系统中的脱氮菌群包括亚硝化单胞菌属(Nitrosomonas)、硝化螺菌属(Nitrospira)和Denitratisoma,其中自养硝化菌的比例高于其在有机短程硝化系统中的比例,但仍低于异养菌在该系统中的比例.有机短程硝化系统中的脱氮菌群主要包括β-Proteobacteria中的一些反硝化细菌和亚硝化单胞菌属(Nitrosomonas),其中亚硝化单胞菌属(Nitrosomonas)的含量很少.  相似文献   

2.
高浓度游离氨冲击负荷对生物硝化的影响机制   总被引:4,自引:4,他引:0  
季民  刘灵婕  翟洪艳  刘京  苏晓 《环境科学》2017,38(1):260-268
工业废水厂或含工业废水较多的城市污水处理厂,在运行过程中可能会意外受到高浓度氨氮废水急性冲击负荷的影响,造成生物硝化反应受到抑制,出水不能稳定达标.为了指导实际污水处理厂应对游离氨(FA)急性冲击负荷造成的出水不达标问题,本文探究高浓度氨氮废水对污水生物硝化系统的影响机制.本文利用序批式活性污泥反应器(SBR)处理模拟高氨氮废水,通过监测氨氮最大比降解速率、硝酸盐氮最大比生成速率、亚硝化和硝化比耗氧速率,硝化菌丰度等指标,研究高浓度氨氮废水中FA对硝化菌活性的影响规律.结果表明,FA在低浓度范围内,增加FA急性负荷能够促进硝化活性,而当FA急性冲击负荷大于一定值时,会对硝化作用造成抑制;FA浓度越大,受到抑制的硝化生物活性所需要的恢复周期越长.利用荧光原位杂交分析技术,发现当进水FA浓度(以N计)从3.6 mg·L~(-1)升高到8.1 mg·L~(-1)时,氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)菌群数量都略微升高,而当FA浓度大于8.1 mg·L~(-1)时,AOB和NOB菌群数量明显下降.FA对AOB和NOB菌群的临界抑制浓度分别为8.1 mg·L~(-1)和6.6 mg·L~(-1),NOB相对于AOB菌群更敏感.  相似文献   

3.
采用Miseq高通量测序技术研究氨氮进水负荷对ABR-MBR组合工艺MBR池中微生物种群的丰度及优势菌群的影响.结果表明,温度为28~32℃、pH值为7.1~7.4、DO为0.5~1mg/L并逐步提高氨氮进水负荷的条件下,可以使氨氧化菌(AOB)大量富集,并抑制亚硝酸盐氧化菌(NOB)的活性,从而实现短程硝化的稳定运行.在氨氮进水负荷为0.94kg/(m3·d)时,平均亚硝酸盐积累率达到60%以上,氨氮去除率稳定在90%.在系统运行过程中,变形菌门是系统中的优势菌门,Nitrosomonas的相对丰度由4.97%升至22.56%,硝化螺菌属的相对丰度为0.06%~2.12%.因此,ABR-MBR组合工艺短程硝化过程中亚硝酸盐积累率与AOB的活性、相对丰度密切相关,即AOB的大量富集可以有效实现短程硝化,而NOB的小幅度增长不会影响短程硝化的实现.系统中微生物种群的多样性和功能微生物的结构稳定性保证了ABR-MBR工艺具有稳定和较好的处理效果.  相似文献   

4.
DO/NH4+-N实现短程硝化过程中生物膜特性   总被引:1,自引:1,他引:0  
实验探究了短程硝化实现过程中生物膜特性的变化情况.采用比值控制(DO/NH+4-N)实现短程硝化,分别取亚硝酸盐积累率为10.27%、52.12%和93.54%时生物膜样品,利用荧光原位杂交(FISH)和激光共聚焦显微镜(CLSM)联用技术观察总菌、氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)数量和空间结构的变化,通过三维激发发射矩阵(EEM)观察胞外聚合物分泌和成分变化情况.比值控制成功富集AOB,并可在NOB未洗脱完全的情况下实现短程硝化.异养菌和硝化菌共存于生物膜内上,异养细菌在外层,硝化菌分布在生物膜表面6~25μm.短程硝化实现的过程中,AOB/NOB值逐步增长,稳定运行时期比值高达15.56.反应器运行过程中,EPS和微生物菌群变化息息相关.微生物活性下降,EPS分泌减少;短程硝化稳定运行时期,NOB等不耐高亚硝酸的菌群衰亡,芳香性蛋白质荧光强度降低.但三维荧光光谱显示,短程硝化实现过程中EPS化学成分变化不明显.  相似文献   

5.
污水处理系统中硝化菌的菌群结构和动态变化   总被引:3,自引:0,他引:3  
研究分析了4种不同工艺类型的城市污水处理厂中氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的丰度及菌群结构.实时定量PCR结果表明4种工艺中AOB菌群的丰度范围为8.56×106~4.46×107cells/g MLSS;NOB菌群的丰度为3.37×108~1.53×109cells/g MLSS.每个工艺中Nitrospira都是优势NOB,占NOB菌群的88%以上.A2O工艺冬季AOB和Nitrospira丰度比夏季均有所降低,这是导致冬季生物脱氮效果变差的主要原因.基于amo A基因的系统发育分析结果显示所有的序列属于Nitrosomonas,其中Nitrosomonas oligotropha cluster占克隆文库的60.1%,是AOB种群中的优势菌属,Nitrosomonas-like cluster和Nitrosomonas europaea cluster次之,分别占克隆文库的29.6%和9.1%.N.europaea cluster只在A2O工艺中出现,且在A2O工艺夏季污泥样品克隆文库中达到44.7%.低DO运行使N.europaea cluster成为优势AOB是A2O工艺夏季出现较高亚硝酸盐积累率的主要原因.研究结果证实了城市污水处理厂中优势AOB和NOB分别为Nitrosomonas和Nitrospira,硝化菌群占总菌群的1%~7%,其丰度、相对含量和菌群结构是影响硝化效果的主要因素.  相似文献   

6.
在内循环半短程亚硝化工艺中,污泥浓度为4 000 mg·L-1、溶解氧小于0.2 mg·L-1、温度(15~29℃)、水力停留时间4.6 h条件下,不同的回流比对系统中微生物群落有着明显的影响,回流比75%时,微生物的生物量达到最高值,出水中的亚硝态氮和氨氮的浓度比可控制在1.定量PCR和16S rRNA基因的克隆文库结果表明:在低溶解氧浓度下氨氧化菌是主要脱氮菌群,该菌群促进了半短程亚硝化反应的进行,与传统的硝化系统比较,在内循环半短程亚硝化工艺中没有检测到硝化螺旋菌(Nitrospira)和硝化杆菌(Nitrobacter),在内循环半短程亚硝化系统中浮霉菌属(Planctomycetes)的量也高于传统的脱氮系统.氨单加氧酶基因克隆文库结果表明,系统中的氨氧化菌群主要属于亚硝化单胞菌属(Nitrosomonas).因此内循环半短程亚硝化工艺在经济和技术上是可行的.  相似文献   

7.
东太湖水产养殖对沉积物中氨氧化原核生物的影响   总被引:1,自引:0,他引:1  
储瑜  何肖微  曾巾  赵大勇  孙强  曹萍  吴庆龙 《环境科学》2018,39(9):4206-4214
本研究旨在了解东太湖水产养殖区表层沉积物中氨氧化微生物的群落特征.以编码氨单加氧酶的α亚基(amo A)基因为标记,通过实时荧光定量PCR技术(real-time q PCR)分析环境中好氧氨氧化原核生物的丰度;通过构建克隆文库、测序,进而划分操作分类单元(OTUs)构建系统发育树,分析氨氧化微生物的群落结构与多样性.分析养殖区和对照区表层沉积物中氨氧化微生物群落结构和多样性发现,养殖区中氨氧化细菌(ammonia-oxidizing bacteria,AOB)的丰度更高而对照区中氨氧化古菌(ammonia-oxidizing archaea,AOA)的丰度更高;AOA在养殖区多样性更高,AOB在对照区多样性更高;AOA在养殖区和对照区沉积物中的优势类群均为Nitrosopumilus,AOB在养殖区和对照区沉积物中的优势类群相同均为亚硝化螺旋菌属(Nitrosospira).水产养殖主要通过影响沉积物中的氨氮含量来影响AOA和AOB的丰度,养殖过程会影响AOA的群落结构而对AOB的群落结构则无明显影响.  相似文献   

8.
厌氧氨氧化是污水脱氮工艺中的重要环节,系统中的菌群结构决定了其处理效果.低温厌氧氨氧化技术因节省大量能源更具有良好的发展前景,厌氧氨氧化细菌在其中起着至关重要的作用.为了探讨降温过程中(由30℃降为20℃时)厌氧氨氧化反应器处理城市污水时微生物群落的变化,利用磷脂脂肪酸(PLFA),定量PCR和PCR-DGGE分析方法对城市生活污水厌氧氨氧化系统中的微生物的量、厌氧氨氧化菌的量以及功能微生物菌群的变化进行了研究.磷脂脂肪酸分析结果显示当温度由30℃降为20℃时,微生物的总量首先降低,随着运行时间的延续逐渐升高.定量PCR结果显示厌氧氨氧化菌16S rRNA基因拷贝数由30℃的1.19×108m L-1增至20℃的1.86×108m L-1,系统出水氨氮降低.PCR-DGGE结果显示降温过程中颗粒污泥中厌氧氨氧化菌群由Candidatus Kuenenia sp.为主,转变为Candidatus Brocadia sp.和Candidatus Kuenenia sp.为主的混合菌.  相似文献   

9.
通过改变进水氨氮浓度和容积负荷,研究沸石曝气生物滤池(ZBAF)的短程硝化特性及其机制,利用高通量测序技术分析ZBAF中生物膜的微生物群落结构.结果表明:稳定运行阶段,亚硝氮产率(NPR)可达0.760kg/(m~3·d),亚硝氮积累率(NAR)高于98%;游离氨(FA)对亚硝酸盐氧化菌(NOB)的抑制是实现短程硝化的主要原因,沸石对氨氮的吸附作用有利于维持合适的FA浓度,从而选择性抑制NOB的活性;亚硝氮的产生遵循零级动力学模型;ZBAF内实现了AOB的富集以及NOB的抑制,其中AOB(Nitrosomoadaceae)的相对丰度高于61%,未检测出NOB.  相似文献   

10.
为了研究季节性温度对短程硝化生物膜系统中微生物群落结构的影响,以平均水温分别为28.3,23.3,21.6,9.6,-0.2℃条件下MBBR反应器的短程硝化生物膜为对象,利用聚合酶链式反应-变性梯度凝胶电泳技术(PCR-DGGE)对比分析上述生物膜中的微生物群落结构,结果表明:在控制合适的水力停留时间(HRT)条件下,水温降低会影响微生物活性,但不影响短程硝化稳定性,平均水温在21.6~-0.2℃变化过程中总细菌和AOB的多样性及均匀性基本不变,芽孢杆菌、黄杆菌、亚硝化单胞菌等污水处理功能微生物都得到保留.平均水温28.3~-0.2℃条件下生物膜中的优势菌群主要分布于变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes).其中AOB均属于β-Proteobacteria的亚硝化单胞菌属本试验仅调控反应器水力停留时间(HRT)就可以实现低温短程硝化,对于短程硝化工艺广泛应用于工程实践具有重要意义.  相似文献   

11.
连续流亚硝化中试反应器的启动及其能力提升   总被引:4,自引:3,他引:1  
朱强  刘凯  董石语  顾澄伟  王凡  李祥  黄勇 《环境科学》2017,38(10):4316-4323
通过接种污水处理厂压滤后污泥,添加悬浮填料进行挂膜,采用连续流反应器处理模拟氨氮污水,对反应器的游离氨(FA)、游离亚硝酸(FNA)以及溶解氧(DO)进行调控,实现了中试亚硝化反应器的成功启动.结果表明,通过前期高DO,后期低DO的运行模式,并对反应器运行过程中的FA、FNA进行调控实现了AOB的富集和NOB的淘汰,启动成功后反应器内部亚硝酸盐产生速率(NPR)达到1.27 kg·(m~3·d)~(-1),亚硝酸盐积累率(NAR)也稳定在98%.采用实时荧光定量PCR方法(quantitative real time PCR,q PCR)对启动初期和成功启动后反应器中的功能微生物(AOB、NOB)进行分析,q PCR结果表明反应功能微生物AOB的拷贝数从启动初期的5.3×10~9copies·m L~(-1)增长到1.6×10~(11)copies·m L~(-1),NOB的拷贝数反而从1.1×10~(10)copies·m L~(-1)下降到1.2×10~9copies·m L~(-1),AOB拷贝数的数量级比NOB的要高2个数量级,这也是在启动过程中通过DO、FA、FNA等措施对NOB联合抑制的作用.  相似文献   

12.
针对目前厌氧氨氧化系统内微生物的研究,主要以厌氧氨氧化菌本身这一情况,本研究对长期稳定运行的Anammox滤池内微生物菌群结构进行了测定,同时测试与分析了滤池内厌氧氨氧化菌(AnAOB)、氨氧化菌(AOB)、亚硝酸盐氧化细菌(NOB)和反硝化菌(DNB)的关键动力学常数,探究了溶解氧(DO)浓度从0.2mg/L增加至1.5mg/L,AnAOB、AOB以及NOB活性的变化.结果表明,长期稳定运行的Anammox滤池是一个以厌氧氨氧化功能为主,多菌群共存的混合体系.滤池内厌氧氨氧化活性最高,为5.3mgN/(gVSS·h),同时系统内DNB和AOB也具有一定活性.DO在0.2~1.5mg/L范围内,AnAOB活性变化不大;随着DO浓度增加,AOB比氨氧化速率从0.76mgN/(gVSS·h)增加到1.08mgN/(gVSS·h),通过Monod方程进一步得到AOB氧半饱和常数(KO2,AOB)为(0.106±0.010) mg/L,表明系统内AOB对氧具有极高的亲和力;整个过程基本检测不到NOB的活性.厌氧氨氧化系统中主要功能菌群共存,且相互竞争底物.  相似文献   

13.
李红岩  张昱  高峰  余韬  杨敏 《环境科学》2006,27(9):1862-1865
利用微生物呼吸醌指纹谱图结合传统分析方法研究了水力停留时间(HRT从30 h逐步缩短至5 h)对活性污泥硝化性能及种群结构的影响.结果表明,对于NH4+-N浓度为500 mg·L-1的废水,在HRT≥20 h时,氨氮去除率可达98%以上.若继续缩短HRT,污泥流失严重,尽管进水NH4+-N浓度降低,出水NH4+-N和NO2  相似文献   

14.
不同好氧颗粒污泥中微生物群落结构特点   总被引:3,自引:0,他引:3  
为了探讨活性污泥好氧颗粒化过程对微生物种群的影响、不同底物及不同颗粒化方法培养的好氧颗粒污泥中微生物群落结构的差异,以接种污泥、模拟废水好氧颗粒污泥和分别投加粉末活性炭和硅藻土的实际生活污水好氧颗粒污泥为研究对象,利用PCR-DGGE对比分析了接种污泥和好氧颗粒污泥中的微生物群落结构.结果表明:活性污泥好氧颗粒化过程会减少微生物种群多样性,影响颗粒污泥稳定性的细菌被淘汰,而聚磷菌、反硝化菌、难降解有机物降解菌等污水处理功能微生物都在颗粒化过程中得到保留.活性污泥好氧颗粒化过程中能够实现亚硝化细菌(AOB)一定程度的富集.与接种活性污泥相比,好氧颗粒污泥中AOB的多样性指数与均匀性指数均有提高.好氧颗粒污泥中的优势菌群主要分布于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和未培养菌(uncultured bacterium).其中AOB均属于β-Proteobacteria的亚硝化单胞菌属(Nitrosomonas).  相似文献   

15.
以巢湖市某污水处理厂实际污水为处理对象,基于节能降耗的需求开展A2O工艺中试研究.研究结果表明:当溶解氧从2mg/L降至0.5mg/L时,COD和氨氮的去除率分别为80%和90%,去除性能并未受到影响,没有出现亚硝酸积累,而TN的去除率有较大幅度的提升,从15%提升至44%.低溶解氧条件下,温度降低主要对TN去除率产生影响,从夏季的44%下降至冬季的29%,而氨氮的去除率仍维持在90%以上.由于进水碳源不足,出水主要以硝酸盐氮为主,低温脱氮率仅为29%.长期低氧条件下运行,AOB和NOB的优势种属为Nitrosomonadaceae和Nitrospira,相对丰度分别为2.33%和6.40%.系统NOB在数量和动力学性能上均优于AOB,同时发现存在Denitratisoma好氧反硝化菌,其相对丰度为1.59%.研究结果为低氧条件下实现城市污水脱氮提供了理论和实践依据.  相似文献   

16.
碱度对沸石序批式反应器亚硝化的影响   总被引:1,自引:1,他引:0  
本研究采用沸石序批式反应器(ZSBR)在常温(25℃±1℃)下实现快速稳定的亚硝化,亚硝酸盐氮积累率维持在90.0%以上,并且考察了在进水氨氮500 mg·L~(-1)时,4个不同碱度(以CaCO_3计)对ZSBR亚硝化的影响.结果表明,ZSBR实现快速亚硝化的关键是游离氨(FA)对亚硝酸盐氧化菌(NOB)的抑制作用远大于其对氨氧化菌(AOB)的抑制作用,并且经此过程转化后的含氨氮的废水,可以作为厌氧氨氧化的进水,进一步脱除水中的氨氮与总氮,当系统投加碱度(以CaCO_3计)为2 500mg·L~(-1)时,ZSBR亚硝化效果最好,平均氨氮转化率为66.7%,平均亚硝酸盐氮积累率为98.1%,平均亚硝酸盐氮产率为0.74 kg·(m~3·d)~(-1).高通量测序分析表明ZSBR长时间运行后微生物群落发生显著变化,AOB得到富集,NOB在FA的抑制作用下不断被淘洗出反应器.  相似文献   

17.
基于厌氧氨氧化(Anammox)的高效自养脱氮技术用于城市污水处理为污水处理厂的能量自给运行提供了可能。首先,简述了污水Anammox自养脱氮的反应过程和技术优势,然后重点从亚硝酸盐氧化细菌(NOB)抑制、厌氧氨氧化细菌(AnAOB)富集截留以及AnAOB与好氧氨氧化细菌(AOB)等之间平衡调控3个方面总结分析了Anammox自养脱氮技术用于城市污水处理面临的挑战及其应对策略。最后展望了城市污水Anammox自养脱氮技术的未来研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号