首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Prenatal genetic diagnosis provides information for pregnancy and perinatal decision-making and management. In several small series, prenatal whole exome sequencing (WES) approaches have identified genetic diagnoses when conventional tests (karyotype and microarray) were not diagnostic. Here, we review published prenatal WES studies and recent conference abstracts. Thirty-one studies were identified, with diagnostic rates in series of five or more fetuses varying between 6.2% and 80%. Differences in inclusion criteria and trio versus singleton approaches to sequencing largely account for the wide range of diagnostic rates. The data suggest that diagnostic yields will be greater in fetuses with multiple anomalies or in cases preselected following genetic review. Beyond its ability to improve diagnostic rates, we explore the potential of WES to improve understanding of prenatal presentations of genetic disorders and lethal fetal syndromes. We discuss prenatal phenotyping limitations, counselling challenges regarding variants of uncertain significance, incidental and secondary findings, and technical problems in WES. We review the practical, ethical, social and economic issues that must be considered before prenatal WES could become part of routine testing. Finally, we reflect upon the potential future of prenatal genetic diagnosis, including a move towards whole genome sequencing and non-invasive whole exome and whole genome testing. © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Massively parallel sequencing has revolutionized our understanding of Mendelian disorders, and many novel genes have been discovered to cause disease phenotypes when mutant. At the same time, next-generation sequencing approaches have enabled non-invasive prenatal testing of free fetal DNA in maternal blood. However, little attention has been paid to using whole exome and genome sequencing strategies for gene identification in fetal disorders that are lethal in utero, because they can appear to be sporadic and Mendelian inheritance may be missed. We present challenges and advantages of applying next-generation sequencing approaches to gene discovery in fetal malformation phenotypes and review recent successful discovery approaches. We discuss the implication and significance of recessive inheritance and cross-species phenotyping in fetal lethal conditions. Whole exome sequencing can be used in individual families with undiagnosed lethal congenital anomaly syndromes to discover causal mutations, provided that prior to data analysis, the fetal phenotype can be correlated to a particular developmental pathway in embryogenesis. Cross-species phenotyping allows providing further evidence for causality of discovered variants in genes involved in those extremely rare phenotypes and will increase our knowledge about normal and abnormal human developmental processes. Ultimately, families will benefit from the option of early prenatal diagnosis. © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The field of prenatal screening and diagnosis for fetal anomalies has been marked by a rapid succession of technological advances, including most notably, chromosomal microarray analysis, and next generation sequencing. Despite the diagnostic advantages of these technologies, their incorporation into prenatal testing has created additional challenges of revealing genomic variants of unknown or uncertain significance, and secondary findings. While detailed posttest counseling about uncertain variants is best performed by medical geneticists, many of the screening and diagnostic tests that lead to this information are actually ordered by general maternity health care professionals (HCPs), such as obstetricians, midwives, and family physicians. Maternity HCPs support pregnant women through to the conclusion of their pregnancy and the postpartum period, and thus are close observers of the psychosocial impart of fetal genomic uncertainty on women and their families. While there have been many studies exploring the handling of genomic uncertainty by genetics HCPs, there has been relatively less attention paid to maternity HCPs without speciality training in genetics. This review explores the current literature surrounding nongenetic maternity HCPs' views and experiences of genomic uncertainty and returning uncertain results in the prenatal setting.  相似文献   

4.
Germline pathogenic variants in isocitrate dehydrogenase 1 (IDH1) can lead to a rare neurodevelopmental disorder called metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria, including severe skeletal and cerebral anomalies. To the best of our knowledge, no prenatal case of an IDH1 pathogenic variant has been reported in literature. Somatic sequence variants in IDH1/2 genes are described in distinct cancers, premalignant diseases and rare inherited metabolic disorders. Amniocentesis and further genetic testing including trio exome sequencing were performed due to suspicious findings on a second trimester routine prenatal ultrasound examination. The fetus was found to have growth restriction, cerebral abnormalities (ex vacuo hydrocephalus, cerebellar and vermian hypoplasia, corpus callosum dysgenesis), brachycephaly, narrow chest, persistent left superior vena cava, liver calcifications, hyperechogenic bowel, short tubular bones and joint contractures. A de novo heterozygous variant in the IDH1 gene was detected via trio exome sequencing. The prenatal diagnosis of a de novo pathogenic variant in IDH1 in a fetus with the described phenotype, obtained through trio exome sequencing, helped parents and providers with an informed decision making about pregnancy management.  相似文献   

5.
The fetal fraction (FF) is a function of both biological factors and bioinformatics algorithms used to interpret DNA sequencing results. It is an essential quality control component of noninvasive prenatal testing (NIPT) results. Clinicians need to understand the biological influences on FF to be able to provide optimal post-test counseling and clinical management. There are many different technologies available for the measurement of FF. Clinicians do not need to know the details behind the bioinformatics algorithms of FF measurements, but they do need to appreciate the significant variations between the different sequencing technologies used by different laboratories. There is no universal FF threshold that is applicable across all platforms and there have not been any differences demonstrated in NIPT performance by sequencing platform or method of FF calculation. Importantly, while FF should be routinely measured, there is not yet a consensus as to whether it should be routinely reported to the clinician. The clinician should know what to expect from a standard test report and whether reasons for failed NIPT results are revealed. Emerging solutions to the challenges of samples with low FF should reduce rates of failed NIPT in the future. In the meantime, having a “plan B" prepared for those patients for whom NIPT is unsuccessful is essential in today's clinical practice.  相似文献   

6.
Genome sequencing is increasingly being used to aid genetic diagnosis in fetuses with structural abnormalities detected on ultrasound examination. However, with clinical exome and genome sequencing, there is potential for the recognition and reporting of incidental or secondary findings unrelated to the indication for ordering the sequencing, but of potential medical value for patient care. In the postnatal setting, the American College of Medical Genetics and Genomics (ACMG) has clear guidelines that state that when offering sequencing, secondary findings should be reported in 59 genes for which ACMG consider there is a clinical evidence that pathogenic variants may result in disease that might be prevented or treated, with the option to opt out of receiving this information. However, these guidelines specifically exclude prenatal sequencing. Here, we report the debate on whether or not pathogenic findings in these 59 genes should or should not be reported in the prenatal setting. Although more were in favour of reporting before the debate, there was no significant consensus from the audience. After the debate there was a swing toward not reporting, but a slim majority (55%) remained in favour, indicating that this is an area requiring further research and the development of evidence-based guidelines applicable to prenatal proband and trio sequencing.  相似文献   

7.
The identification of cell-free fetal DNA circulating in maternal blood combined with technological developments, in particular next-generation sequencing, is enabling the development of safer prenatal diagnosis. While this technology has been widely applied as a highly sensitive screening test for aneuploidy, there has been relatively little clinical application for the diagnosis of monogenic disorders. In the UK, we have established non-invasive prenatal diagnosis (NIPD) as a clinical service for a range of inherited disorders. The results from NIPD do not require confirmation by invasive testing and are welcomed by patients and health professionals alike. Here, we describe the technical approaches used, current practice and outline recommendations for best practice when delivering an NIPD service from an accredited laboratory. © 2017 John Wiley & Sons, Ltd.  相似文献   

8.

Objective

There is increasing evidence supporting the clinical utility of next generation sequencing for identifying fetal genetic disorders. However, there are limited data on the demand for and accessibility of these tests, as well as payer coverage in the prenatal context. We sought to identify clinician perspectives on the utility of prenatal exome sequencing (ES) and on equitable access to genomic technologies for the care of pregnancies complicated by fetal structural anomalies.

Method

We conducted two focus group discussions and six interviews with a total of 13 clinicians (11 genetic counselors; 2 Maternal Fetal Medicine/Geneticists) from U.S. academic centers and community clinics.

Results

Participants strongly supported ES for prenatal diagnostic testing in pregnancies with fetal structural anomalies. Participants emphasized the value of prenatal ES as an opportunity for a continuum of care before, during, and after a pregnancy, not solely as informing decisions about abortions. Cost and coverage of the test was the main access barrier, and research was the main pathway to access ES in academic centers.

Conclusion

Further integrating the perspectives of additional key stakeholders are important for understanding clinical utility, developing policies and practices to address access barriers, and assuring equitable provision of prenatal diagnostic testing.  相似文献   

9.
Skeletal dysplasias are a heterogeneous group of conditions, many of which present unexpectedly in the prenatal period with a variety of ultrasound findings. Accurate prenatal diagnosis can now be facilitated using exome sequencing approaches, but in order to interpret results, accurate and detailed phenotyping is required. Here, we describe the sonographic approach to the prenatal diagnosis of skeletal abnormalities and illustrate how taking a systematic approach can facilitate diagnosis.  相似文献   

10.
The ‘Stakeholder Perspectives on Noninvasive Prenatal Genetic Screening’ Symposium was held in conjunction with the 2015 annual meeting of the International Society for Prenatal Diagnosis. During the day-long meeting, a panel of patient advocacy group (PAG) representatives discussed concerns and challenges raised by prenatal cell-free DNA (cfDNA) screening, which has resulted in larger demands upon PAGs from concerned patients receiving prenatal cfDNA screening results. Prominent concerns included confusion about the accuracy of cfDNA screening and a lack of patient education resources about genetic conditions included in cfDNA screens. Some of the challenges faced by PAGs included funding limitations, lack of consistently implemented standards of care and oversight, diverse perspectives among PAGs and questions about neutrality, and lack of access to training and genetic counselors. PAG representatives also put forward suggestions for addressing these challenges, including improving educational and PAG funding and increasing collaboration between PAGs and the medical community. © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Noninvasive prenatal testing (NIPT) has had a profound influence in the field of prenatal diagnosis since the 1997 discovery of cell-free fetal DNA in maternal blood. Research has progressed rapidly, with clinical data supporting laboratory studies showing that NIPT is highly sensitive and specific for fetal aneuploidy, resulting in marked uptake in the high-risk patient population. The superior accuracy of NIPT compared with conventional screening methods has led to significant decreases in the number of invasive diagnostic procedures, in addition to a concomitant decrease in the number of procedure-related fetal losses. Yet, NIPT has been described as a ‘disruptive innovation’ due to the considerable changes the technology has commanded on current prenatal screening and diagnostic practices. This review summarizes both institutional and global experience with NIPT uptake, its effect on reducing diagnostic invasive procedures, and the unique challenges that reduced procedural volume may have on physician and trainee proficiency, cytogenetic laboratories, and neonatal outcome. © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Prenatal testing was performed in a 39-year-old Chinese pregnant woman referred for increased nuchal translucency measuring 5.7 mm. Non-invasive prenatal testing and SNP array study on amniotic fluid samples were normal. Whole exome sequencing (WES) was initiated further as the fetus had pericardial effusion of 1.2 mm, thickened myocardium over the right ventricular lateral wall and aberrant right subclavian artery. A detailed fetal echocardiogram also revealed persistent left superior vena cava and dilated coronary sinus at 20 weeks. From whole exome sequencing of the trio, a de novo heterozygous variant NM_005359.5(SMAD4): c.1499T>C (p.Ile500Thr) was detected. This pathogenic variant has been reported in the postnatal case cohort of Myhre syndrome. This condition is characterized by facial dysmorphism, intellectual disability, hearing loss, skeletal abnormalities and potential life threatening respiratory or cardiovascular manifestations. Termination of pregnancy was performed at 23 weeks. Small chins, pre-axial polydactyly, brachydactyly and clinodactyly were noted in the abortus. Ultrasound findings of increased nuchal translucency, thickened myocardium and pericardial effusion prompted further genetic evaluation for the prenatal diagnosis of Myhre syndrome by whole exome sequencing.  相似文献   

13.
SMPD4 loss is a rare neurodevelopmental disorder that leads to severe mental and physical disability and early death in infancy. Most cases of this genetic condition have been diagnosed postnatally. This article focuses on the prenatal findings of affected fetuses. The phenotypes can include growth restriction, arthrogryposis (clenched hands, foot deformity), as well as cerebral abnormalities (simplified gyral pattern/lissencephaly, cerebellar hypoplasia, corpus callosum deformity). SMPD4 loss is detectable via exome sequencing. Here, two fetuses displayed a homozygotic pathogen variant in the SMPD4 gene, encoding for the enzyme Sphingomyelinase-4. Both parents were heterozygous carriers of the pathogenic variant. On detection of the above mentioned signs exome sequencing is indicated, with focus on the SMPD4 gene.  相似文献   

14.
The goal to noninvasively detect fetal aneuploidies using circulating cell-free fetal DNA in the maternal plasma seems to be achieved by the use of massively parallel sequencing (MPS). To date, different MPS approaches exist, all aiming to deliver reliable results in a cost effective manner. The most widely used approach is the whole genome MPS method, in which sequencing is performed on maternal plasma to determine the presence of a fetal trisomy. To reduce costs targeted approaches, only analyzing loci from the chromosome(s) of interest has been developed. This review summarizes the different MPS approaches, their benefits and limitations and discusses the implications for future noninvasive prenatal testing. © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Trisomy 21 (T21) is the most common autosomal aneuploidy that is associated with intellectual disability. It is the focus of many prenatal screening programs across the globe. Pregnant women who receive a prenatal diagnosis of T21 in their fetus currently have the option of continuing or terminating their pregnancy, but no fetal treatment is available. In this paper, we review compelling morphogenetic, cellular, and molecular studies that, taken together, suggest that there is an important window of opportunity during fetal life to positively impact brain development to improve postnatal neurocognition and behavior. Although substantial progress has been made in understanding the basic neurobiology of Down syndrome (DS), the majority of pre-clinical trials is currently focused on adults. There are a number of challenges in the identification and development of novel antenatal therapies for DS, including the lack of toxicity and teratogenicity for the pregnant woman and the fetus, evidence that the compounds can cross the placenta and achieve therapeutic levels, and the demonstration of clinical improvement. Preliminary experiments in mouse models suggest that prenatal treatment of DS is an achievable goal. © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
We report a fetus with hydrops, congenital heart disease and bilateral radioulnar synostosis caused by a novel pathogenic MECOM variant. The female fetus was referred for post-mortem examination after fetal hydrops and intrauterine death was diagnosed at 20 weeks gestation. Post-mortem examination confirmed fetal hydrops, pallor, truncus arteriosus and bilateral radioulnar synostosis. Trio whole genome sequencing analysis detected a novel de novo heterozygous pathogenic loss-of-function variant in MECOM (NM_004991), associated with a diagnosis of Radioulnar Synostosis with Amegakaryocytic Thrombocytopenia 2 (RUSAT-2). RUSAT-2 is a variable condition associated postnatally with bone marrow failure, radioulnar synostosis and congenital anomalies. RUSAT-2 is not currently associated with a prenatal phenotype or fetal demise, and was not present on diagnostic NHS prenatal gene panels at time of diagnosis. This case highlights the diagnostic value of detailed phenotyping with post-mortem examination, and of using a broad sequencing approach.  相似文献   

17.
Imprinting Disorders (ImpDis) are a group of congenital syndromes associated with up to four different types of molecular disturbances affecting the monoallelic and parent-of-origin specific expression of genomically imprinted genes. Though each ImpDis is characterized by aberrations at a distinct genetic site and a specific set of postnatal clinical signs, there is a broad overlap between several of them. In particular, the prenatal features of ImpDis are non-specific. Therefore, the decision on the appropriate molecular testing strategy is difficult. A further molecular characteristic of ImpDis is (epi)genetic mosaicism, which makes prenatal testing for ImpDis challenging. Accordingly, sampling and diagnostic workup has to consider the methodological limitations. Furthermore, the prediction of the clinical outcome of a pregnancy can be difficult. False-negative results can occur, and therefore fetal imaging should be the diagnostic tool on which decisions on the management of the pregnancy should be based. In summary, the decision for molecular prenatal testing for ImpDis should be based on close exchanges between clinicians, geneticists, and the families before the initiation of the test. These discussions should weigh the chances and challenges of the prenatal test, with focus on the need of the family.  相似文献   

18.
Recently, we have witnessed the rapid translation into clinical practice of non-invasive prenatal testing for the common aneuploidies, most notably within the United States and China. This represents a lucrative market with testing being driven by companies developing and offering their services. These tests are currently aimed at women with high/medium-risk pregnancies identified by serum screening and/or ultrasound scanning. Uptake has been impressive, albeit limited to the commercial sector. However, non-invasive prenatal diagnosis (NIPD) for single-gene disorders has attracted less interest, no doubt because this represents a much smaller market opportunity and in the majority of cases has to be provided on a bespoke, patient or disease-specific basis. The methods and workflows are labour-intensive and not readily scalable. Nonetheless, there exists a significant need for NIPD of single-gene disorders, and the continuing advances in technology and data analysis should facilitate the expansion of the NIPD test repertoire. Here, we review the progress that has been made to date, the different methods and platform technologies, the technical challenges, and assess how new developments may be applied to extend testing to a wider range of genetic disorders. © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Developmental brain abnormalities are complex and can be difficult to diagnose by prenatal imaging because of the ongoing growth and development of the brain throughout pregnancy and the limitations of ultrasound, often requiring fetal magnetic resonance imaging as an additional tool. As for all major structural congenital anomalies, amniocentesis with chromosomal microarray and a karyotype is the first-line recommended test for the genetic work-up of prenatally diagnosed central nervous system (CNS) abnormalities. Many CNS defects, especially neuronal migration defects affecting the cerebral and cerebellar cortex, are caused by single-gene mutations in a large number of different genes. Early data suggest that prenatal diagnostic exome sequencing for fetal CNS defects will have a high diagnostic yield, but interpretation of sequencing results can be complex. Yet a genetic diagnosis is important for prognosis prediction and recurrence risk counseling. The evaluation and management of such patients is best done in a multidisciplinary team approach. Here, we review general principles of the genetic work-up for fetuses with CNS defects and review categories of genetic causes of prenatally diagnosed CNS phenotypes.  相似文献   

20.
Prenatal trio exome sequencing (ES) has become integrated into the care for pregnant women when the fetus has structural anomalies. Details regarding optimizing indications for prenatal exome sequencing, its detection rates with different categories of fetal anomalies, and principles of interpretation of pathogenicity of sequence variants are still under investigation. However, there is now growing consensus about its benefits for finding the cause of fetal structural anomalies. What is not established, is whether exome or genome sequencing (GS) has a place in the care of all pregnant women. This report is a summary of the debate on this topic at the 26th International Conference on Prenatal Diagnosis and Therapy. Both expert debaters considered the advantages and disadvantages. Advantages include the ability to diagnose serious childhood conditions without a prenatally observable phenotype, which creates the potential of early treatments. Disadvantages include difficulties with variant classification, counseling complexities, healthcare cost, and the burden on healthcare systems and families, in particular with the discovery of adult-onset disorders or variants of uncertain significance. Although both debaters weighed the balance of these conflicting arguments differently, they agreed that more research is needed to further explore the clinical utility and ethical aspects of GS for all pregnant women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号