首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
城市大气挥发性有机物(VOCs)是二次有机气溶胶(SOA)的重要前体物,而SOA又是城市大气细粒子的重要组成成分,对大气细粒子PM2.5的贡献不容忽视。文章综述了国内外城市大气中VOCs排放源以及来源解析的研究现状。研究结果表明:城市大气挥发性有机物(VOCs)排放源中人为源来自汽车尾气、燃料挥发、石油化工、涂料的使用和生物质燃料燃烧等,天然源来自植物排放;主要的排放源是汽车尾气、燃料挥发、涂料的使用。城市大气挥发性有机物(VOCs)来源解析方法主要为PMF、PCA/APCS受体模型。天然源主要来自于植物排放,其中排放量最大的VOCs是异戊二烯和单萜烯;人为源中最主要VOCs为苯和甲苯等芳香烃以及乙烯、异戊烷、异丁烷、丙烷、异丁烷、乙烷、正丁烷等低碳烷烃烯烃。这为进一步开展VOCs源解析研究提供参考。同时发现天然源中对SOA贡献最大的是异戊二烯和单萜烯,人为源中芳香烃(甲苯、乙苯、间/对二甲苯、甲苯、乙苯、1,2,4-三甲苯、邻二甲苯、1,3-二乙苯)、烯烃(蒎烯)、烷烃(正十一烷)对SOA的生成有着巨大的贡献。  相似文献   

2.
为研究成都市城区大气VOCs季节变化特征,本研究在2018年12月至2019年11月对VOCs组分进行监测,并对VOCs的浓度水平、各化学组成、化学反应活性和来源进行分析.结果表明,成都市城区春、夏、秋和冬季VOCs的平均体积分数分别为32.29×10~(-9)、 36.25×10~(-9)、 40.92×10~(-9)和49.48×10~(-9),冬季的浓度明显高于其他季节,春季和夏季的浓度水平相差不大,各季节VOCs的组分浓度水平有所差异,冬季烷烃占总VOCs的比例最大,可能受机动车排放的影响较明显;夏季和秋季含氧(氮)挥发性有机物占比远高于春、冬季,一次源的挥发排放和二次转化的生成贡献较大;成都市城区不同季节大气中VOCs平均浓度排名靠前的关键组分基本无变化,主要是C_2~C_4的烷烃、乙烯、乙炔及二氯甲烷等,可能受机动车尾气、油气挥发、溶剂使用和LPG燃料等影响明显,夏季丙酮以及乙酸乙酯等含氧有机物浓度贡献突出;根据·OH消耗速率和OFP计算可知关键活性物种主要为间/对-二甲苯、乙烯、丙烯、1-己烯、甲苯、异戊烷和正丁烷等,这些物种应该优先减排和控制;四季VOCs源解析结果显示:春、夏季温度较秋、冬季高,光照更强,PMF明显解析出天然源和二次排放贡献,同时,由于夏季温度较高,解析出油气挥发占9%;秋、冬季占比增加的源主要为机动车尾气和燃烧源,燃烧源的排放占比在25%左右,另餐饮源的排放占比在9%左右.  相似文献   

3.
《环境科学与技术》2021,44(1):190-197
文章在岳阳市一个国家空气质量监测站附近,采用罐采样方法采集一次O_3污染过程期间环境全空气样品,利用预浓缩-GC/FID/ECD/MSD技术分析106种VOCs,共检出77种VOCs,研究其组成与来源。结果表明:岳阳市秋季大气TVOCs体积分数为(44.91±15.52)×10~(-9),以烷烃(19.9%~53.0%)、含氧挥发性有机物(OVOCs)(15.7%~55.9%)为主,优势物种为C2~C5烷烯烃、OVOCs、苯系物及卤代烃。秋季VOCs丙烯等效浓度范围为60.46×10~(-9)~230.04×10~(-9);臭氧生成潜势范围为76.37~394.30μg/m~3;反应活性较高的物种为异戊烷、间/对-二甲苯和甲苯及丙烯、乙烯,根据反应活性物种初步判断岳阳市VOCs主要来源为机动车尾气排放及本地石油化工企业排放。特征比值溯源发现秋季异戊烷/正戊烷体积浓度比值为2.6,受机动车排放源影响更大。甲苯和苯、邻二甲苯和苯及间/对-二甲苯和苯体积浓度比值平均值分别为0.05、0.01和0.07,主要来源于生物质、生质燃料、煤燃烧源。邻二甲苯和乙苯、间/对-二甲苯和乙苯体积比值均值分别为0.80和2.71,受溶剂排放影响较大。控制岳阳市秋季O_3污染应着力于交通排放、LPG燃烧排放源、生物质燃烧源、石油化工及溶剂挥发排放的治理。  相似文献   

4.
于2014年1-12月在武汉市城区对大气中105种挥发性有机化合物(VOCs)进行在线监测,以便研究武汉市区VOCs的组成特征及变化规律。同时评估大气VOCs对武汉市臭氧(O_3)生成的影响,并探讨关键VOCs活性物种及来源。结果表明,武汉市2014年大气总挥发性有机化合物(TVOCs)年平均浓度为(92.88±1.06)μg/cm~3,乙烷、丙烷、乙烯、正丁烷、甲苯是浓度最大的5个物种。大气TVOCs的浓度在冬季最高夏季最低,昼夜变化表现为明显的早晚双高峰特征。在非甲烷碳氢化合物(NMHCs)中,烯炔烃的臭氧生成潜势最大,其次为芳香烃和烷烃。武汉市臭氧生成潜势最大的5个物种分别为乙烯、间/对-二甲苯、丙烯、甲苯和异丁烯。机动车排放是武汉市大气VOCs的重要来源,控制机动车VOCs排放有助于削减大气VOCs活性较大的组分,从而减少臭氧的生成。  相似文献   

5.
上海某石化园区周边区域VOCs污染特征及健康风险   总被引:9,自引:8,他引:1  
盛涛  陈筱佳  高松  刘启贞  李学峰  伏晴艳 《环境科学》2018,39(11):4901-4908
为了解石化周边区域大气VOCs污染特征,使用在线GC-FID监测仪于2017年10月对上海市某近石化周边居民区大气VOCs进行了为期1个月的连续观测;通过最大增量反应活性(MIR)法估算了VOCs对臭氧(O_3)生成的贡献,并进行了健康风险研究.结果表明,观测期间VOCs总质量浓度的范围16. 4~1 947. 8μg·m~(-3),平均浓度为40. 7μg·m~(-3);烷烃、烯/炔烃和芳香烃的平均占比分别为66. 2%、25. 9%和7. 9%. VOCs总浓度日变化特征呈现单峰型变化,峰值浓度为127. 9μg·m~(-3)(07:00). VOCs总浓度的平均臭氧生成潜势(OFP)为249. 7μg·m~(-3),烯、炔烃对OFP的贡献最高,达到153. 4μg·m~(-3);丙烯、反-2-丁烯、乙烯是关键的活性组分.己烷、苯、甲苯、乙苯、邻-二甲苯和间/对-二甲苯的健康风险较小.  相似文献   

6.
为了解石化周边区域大气VOCs污染特征,使用在线GC-FID监测仪于2017年10月对上海市某近石化周边居民区大气VOCs进行了为期1个月的连续观测;通过最大增量反应活性(MIR)法估算了VOCs对臭氧(O3)生成的贡献,并进行了健康风险研究.结果表明,观测期间VOCs总浓度的范围16.4~1947.8μg·m-3,平均浓度为40.7μg·m-3;烷烃、烯/炔烃和芳香烃的平均占比分别为66.2%、25.9%和7.9%.VOCs总浓度日变化特征呈现单峰型变化,峰值浓度为127.9μg·m-3(07:00).VOCs总浓度的平均臭氧生成潜势(OFP)为249.7μg·m-3,烯、炔烃对OFP的贡献最高,达到153.4μg·m-3;丙烯、反-2-丁烯、乙烯是关键的活性组分.己烷、苯、甲苯、乙苯、邻-二甲苯和间/对-二甲苯的健康风险较小.  相似文献   

7.
深圳大气VOCs浓度的变化特征与化学反应活性   总被引:15,自引:0,他引:15       下载免费PDF全文
对深圳2010年4个季节大气中VOCs进行了监测,研究了VOCs组分、季节变化和日变化特征.结果表明,烷烃是大气中含量最丰富的VOCs物种,占总VOCs的50%以上,其他依次是芳香烃和烯烃.总VOCs浓度季节变化表现为冬季最高和夏季最低,日变化特征则表现为夜晚浓度高、白天浓度低,峰值出现在早晨7:00左右,最低值则出现在下午14:00.通过VOCs物种间的比值特征分析了部分物种的来源,结果显示,反式-2-丁烯和顺式-2-丁烯主要来源于机动车尾气,甲苯和正己烷则受到了溶剂挥发的影响.利用最大增量反应活性(MIR)计算了各类VOCs的臭氧生成潜势(OFP),大气各类VOCs的OFP芳香烃最高、其次为烯烃,烷烃最低,甲苯、间,对-二甲苯和乙烯对臭氧生成的贡献在VOCs物种中排名前3.  相似文献   

8.
北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究   总被引:31,自引:20,他引:11  
挥发性有机物(VOCs)是大气中光化学污染臭氧(O3)的重要前体物,其在大气中的浓度水平往往直接影响着臭氧的污染水平.以2008年夏季北京大气中VOCs浓度观测资料为基础,分析了VOCs浓度和组分随时间的变化特征,比较了各组分对臭氧产生的影响潜势,并利用主成分分析法研究了VOCs主要来源.结果表明,北京大气总VOCs在上午和下午的浓度分别是34.38×10-9(体积分数)和27.13×10-9(体积分数),组分中以烷烃最高,芳烃次之,烯烃最低,下午大气中VOCs浓度显著低于上午,烯烃、芳烃和烷烃依次下降28%、26%和15%;其中1,2,4-三甲苯等效丙烯浓度最高(8.05×10-9C),其次为间对二甲苯(6.97×10-9C)、甲苯(6.41×10-9C)和1,3,5-三甲苯(5.64×10-9C);芳烃对大气O3生成贡献最大(47%),其次是烯烃(40%),烷烃最低(13%).北京大气中VOCs主要来源于机动车(28%)、溶剂挥发(19%)、液化气泄漏(15%)和工业排放(12%).为遏制近年来夏季O污染加重趋势,北京应大力减少VOCs排放,特别是芳香烃的排放量.  相似文献   

9.
佛山市冬夏季非甲烷烃污染特征研究   总被引:8,自引:7,他引:1  
2014年冬季和2015年夏季在佛山市采集了30个非甲烷烃(NMHCs)的样品,定量分析了多种化合物.结果表明,采样期间佛山市冬季和夏季NMHCS的浓度分别为122.30μg·m~(-3)和56.22μg·m~(-3).其中冬季和夏季NMHCs中浓度最高的5个物种由大到小依次为:甲苯(25.12μg·m~(-3))、间/对-二甲苯(13.76μg·m~(-3))、丙烷(9.17μg·m~(-3))、乙苯(7.25μg·m~(-3))、乙烯(6.77μg·m~(-3))和甲苯(6.18μg·m~(-3))、间/对-二甲苯(5.21μg·m~(-3))、邻-二甲苯(4.15μg·m~(-3))、β-蒎烯(3.75μg·m~(-3))、丙烷(3.29μg·m~(-3)).相比2008年,NMHCs有大幅度下降.冬季芳烃、烷烃、烯烃和炔烃所占比例分别为51.20%、34.70%、10.04%和4.05%;夏季芳烃、烷烃、烯烃和炔烃所占比例分别为43.93%、33.99%、19.20%和2.88%.因为NMHCs/NOx的冬、夏季值分别为0.90和1.88,表明采样期间佛山市大气臭氧峰值浓度都是受NMHCs控制,还应继续加强NMHCs的控制.佛山市NMHCs冬季和夏季的丙烯等效浓度和臭氧生成潜势分别为45.09μg·m~(-3)和40.64μg·m~(-3)、392.77μg·m~(-3)和207.77μg·m~(-3).间/对-二甲苯、甲苯和间/对-二甲苯、异戊二烯分别对冬季和夏季的臭氧生成潜势起到很重要的贡献.采样期间佛山市冬季和夏季的苯/甲苯的值为0.15和0.20,表明佛山市冬夏季NMHCs的主要来源是工业过程.相对2008年,本研究中异戊烷不属于佛山市NMHCs中浓度最高的5种污染物,说明佛山市在防止汽油挥发对环境造成影响方面的措施取得了明显成效.  相似文献   

10.
天津表层土中饱和烃污染物的组成及分布特征   总被引:9,自引:0,他引:9  
分析了天津地区主要环境功能区表层土样品中烃类污染物的组成特征.结果表明,不同环境功能区表层土中均分布有多种类型的饱和烃污染物,主要包括正构烷烃,无环类异戊间二烯烷烃,单甲基支链烷烃,烷基环己烷和甾,萜类等.这些化合物在区域上分布广泛,组分变化多样.样品间正构烷烃碳数分布特征差别较大,CPI1为0.76~1.26,CPI2为1.29~7.14,CPI(wax)为0.81~3.24.aaaC29-甾烷20S/(20R+20S)为0.45~0.72,C31藿烷22S/(22S+22R)为0.54~0.62,均已达到平衡终点.类异戊间二烯烷烃和烷基环己烷的分布特征与原油相近.表明污染源较复杂,主要包括矿物油,化石燃料的不完全燃烧及天然产物的生物化学降解等,不同功能区污染源存在一定的差别.  相似文献   

11.
用GC/MS,对金华地区3个采样点、四个季节,225个PM_(2.5)样品中10种极性有机示踪化合物进行了分析,包括天然源:3个异戊二烯SOA示踪物、1个α-蒎烯SOA示踪物和2个真菌孢子示踪物,和人为源:1个甲苯SOA示踪物、3个生物质燃烧示踪物.结果表明,异戊二烯SOA示踪物浓度为3.41~48.50 ng·m~(-3),α-蒎烯SOA示踪物浓度为2.45~25.40 ng·m~(-3),甲苯SOA示踪物为4.75~39.80 ng·m~(-3).各SOA示踪物均有明显的季节变化,其中,异戊二烯SOA示踪物呈夏季秋季≈春季冬季,α-蒎烯SOA示踪物夏季春季≈秋季冬季,甲苯SOA示踪物秋季夏季春季冬季.估算得出甲苯SOC对OC的贡献为3.03%~24.50%,而来源于生物质燃烧的有机碳对OC的贡献可以达到1.23%~42.80%.表明人为源排放前体物的二次转化以及生物质燃烧是金华地区大气细颗粒物污染的重要来源.  相似文献   

12.
为研究菏泽市冬季大气气溶胶中二元羧酸类化合物的昼夜变化特征与形成机制,于2017年冬季(12月)进行为期1个月的PM_(2.5)样品采集,并分析二元羧酸、酮羧酸、α-二羰基化合物及左旋葡聚糖等化学组分.结果表明,菏泽市冬季PM_(2.5)中白天二元羧酸与酮羧酸的总浓度均呈昼高夜低的变化特征,但α-二羰基化合物(二元羧酸的重要前体物)的变化特征却与之相反,表明白天气溶胶的氧化程度比夜晚强.无论在白天还是晚上,草酸(C_2)均是浓度最高的二元羧酸,其次是邻苯二甲酸(Ph)、丁二酸(C_4)和丙二酸(C_3),与其他城市地区的分子组成是相似的.由C_3/C_4的比值与温度(T)间的相关性分析可知,菏泽市冬季有机化合物主要受本地源的影响,而受远源输入的影响很小. C_2与SO_4~(2-)、气溶胶实际酸度(pHIS)的相关性分析表明,C_2主要是在液相中经酸催化的二次氧化反应形成的.因为主要的二元羧酸类化合物(C_2、Gly和mGly)与左旋葡聚糖(Levo)的相关性很强,且K~+/OC的平均比值为0. 06(范围为0. 03~0. 13),所以可以得出二元羧酸类化合物及K~+主要受生物质燃烧的影响.  相似文献   

13.
为研究石化行业VOCs的排放特征及其环境影响,选取山东省3家典型地方炼化企业开展样品采集和物种分析,并利用MIR(最大增量反应活性)法和SOAP(二次有机气溶胶生成潜势)法量化其对二次污染生成的贡献.结果表明,不同生产类型企业VOCs排放组成差异较大.从体积浓度来看,企业A各采样点位以芳香烃(30.4%~92.2%)为主要排放化合物;企业B排放以烷烃(15.4%~53.8%)、烯炔烃(11.4%~71.7%)和含氧VOCs(0.1%~53.8%)为主;企业C则主要排放烷烃(6.1%~95.3%)和烯炔烃(1.2%~93.1%).从合成源谱来看,企业A以芳香烃为主要化合物,乙苯、苯、苯乙烯、甲苯为高排放物种;企业B中烷烃、烯炔烃和含氧VOCs均有较高占比,1-丁烯、甲基乙基酮、反-2-丁烯、异丁烷、甲苯为主要物种;企业C则主要排放烷烃类化合物,包括异丁烷、丙烷、环戊烷.OFP(臭氧生成潜势)评估结果表明,芳香烃化合物包括乙苯、苯乙烯、苯和甲苯,其对企业A的贡献最大;企业B中,烯炔烃化合物包括1-丁烯、反-2-丁烯、异戊二烯,其OFP占比最高;企业C则以烯炔烃和烷烃为高贡献化合物,其中丙烯、异丁烷、间/对-二甲苯、顺-2-丁烯为关键活性物种.SOAP评估结果表明,各企业SOA(二次有机气溶胶)的生成均由芳香烃主导,关键活性物种为甲苯、苯乙烯、苯、间/对-二甲苯.研究显示,地方炼化企业所排的VOCs组分复杂且存在显著的工艺差异,应根据筛选出的关键活性组分制定针对性的VOCs减排策略.   相似文献   

14.
研究发现,在美国黄石国家公园及新西兰奥拉凯科拉科(Orakei Korako)地热区的热泉蓝细菌席中含有几组单甲基支链烷烃,这些化合物据报道常存在于培养的和天然的蓝细菌群落中。在这两种菌席中分别存在C_(17)/C_(18)和C_(16)/C_(18)烷烃的中部支链所有可能的结构异构体。几个C_(19)双甲基和C_(20)多链烷烃也是奥拉凯科拉科菌席的主要烃类。在现代蓝细菌席中鉴别出中部支链的烃烷系列表明,古代沉积物中存在这些化合物可能与直接的生物成因贡献有关,而并非由成岩作用形成。  相似文献   

15.
长白山地区大气VOCs 的观测研究   总被引:7,自引:1,他引:6       下载免费PDF全文
为了解我国东北内陆背景大气中挥发性有机物(VOCs)的浓度水平和变化形式,采用3 步冷冻浓缩和GC/MS 联用技术对长白山地区大气中VOCs 进行了为期1 年的采样分析.结果表明,长白山地区大气中总挥发性有机物(TVOCs)年平均浓度为(181.7±69.6)×10-9C(碳单位体积比),其中烷、烯、芳香和卤代烃4 类物质的百分含量依次为43%、22%、31%和4%.烷烃类物质中异戊烷、2-甲基戊烷、正戊烷和3-甲基戊烷等机动车尾气或汽油挥发特征性物质浓度最高;芳香烃类物质中苯/甲苯的特征比值略高于机动车尾气排放特征比值0.5;烯烃类物质以植物排放的蒎烯、异戊二烯为主.从高浓度VOCs 种类分析,长白山地区大气VOCs 受汽车污染和森林排放双重控制.TVOCs 浓度年度峰值出现在春季,为(206.0±58.9)×10-9C;谷值出现在冬季,为(152.3±53.9)×10-9C.根据等效丙烯浓度的计算,烯烃对该地区O3 生成贡献最大,而含量丰富的烷烃、芳香烃则在光化学反应中贡献较小.  相似文献   

16.
2014年在北京市城市对照点定陵(城市背景点)、东四(城区点)和永乐店(东南区域传输点)3个不同功能站点进行了为期一年的大气挥发性有机物连续自动观测,测定了包括含氧VOCs在内的98种挥发性有机物,系统分析了北京地区大气VOCs的组成特征、时空分布特征及大气化学活性.结果表明,北京市大气VOCs的年均体积分数为(47.36±13.78)×10-9,化学组成以烷烃为主,占39.55%,其次是OVOCs,再次是烯烃和芳香烃.中心城区点和东南区域传输点的VOCs浓度水平显著高于城市背景点.中心城区点VOCs受交通源和生活燃气排放影响显著,东南区域传输点受交通源和工业溶剂源影响显著,而城市背景点则受上风城区传输影响大.总VOCs浓度季节变化整体表现为冬高、夏低的特点.受污染来源的差异影响,不同点位的不同组分表现出并不相同的日变化特征.甲苯/苯的比值分析显示,北京地区冬季采暖期燃煤影响突出,春夏季溶剂挥发贡献增加.北京VOCs大气化学活性以烯烃为主,其次是芳香烃和OVOCs,关键活性组分有乙烯、乙醛、间/对-二甲苯、甲苯、丙烯、邻-二甲苯、乙苯、正丁烷、1-丁烯和丙醛等.  相似文献   

17.
为研究聊城市冬季大气PM_(2.5)中正构烷烃和糖类化合物的分子组成、浓度水平及来源,于2017年1~2月在聊城大学进行PM_(2.5)样品采集,对19种(C18~C36)正构烷烃和10种糖类化合物进行分析,并采用主成分分析法(PCA)解析其来源.结果表明,聊城市冬季PM_(2.5)中总正构烷烃的质量浓度为(456. 9±252. 5) ng·m~(-3),其中,灰霾期的质量浓度最高,约为清洁天的2倍,烟火Ⅰ期与Ⅱ期分别为清洁天的0. 9倍和1. 2倍.采样期间碳优势指数(CPI)值为1. 2±0. 1,植物蜡排放的正构烷烃对总正构烷烃的贡献率(%Wax Cn)为3. 1%~36. 0%,表明化石燃料燃烧是聊城市大气中正构烷烃的主要来源.聊城市冬季PM_(2.5)中糖类化合物的总质量浓度为(415. 5±213. 8) ng·m~(-3),其中左旋葡聚糖的浓度最高,其次是半乳聚糖和甘露聚糖,三者共占总糖的91. 6%,表明生物质燃烧源对聊城市大气气溶胶具有重要贡献.主成分分析(PCA)结果表明,聊城市冬季大气气溶胶中正构烷烃和糖类化合物主要来自化石燃料的燃烧和生物质燃烧.  相似文献   

18.
2019年对沈阳市大气挥发性有机物(VOCs)开展了为期l a的观测,并对得到的53种物种进行浓度特征以及反应活性的研究.结果表明,观测期间沈阳市VOCs平均浓度为65.33 μg·m-3,烷烃、烯烃和芳香烃质量分数分别为62.44%、16.52%和19.32%.浓度排名前10的物种主要是C3~C5的烷烃、烯烃和部分芳香烃,累计占VOCs总浓度的64.13%.大气中烷烃、烯烃和芳香烃浓度均表现为双峰型的日变化特征,峰值分别出现在06:00~08:00和19:00~20:00,最低点出现在14:00~15:00;月变化上,该地ρ(VOCs)分别在12月和5月达到最高值(136.44μg.m-3)和最低值(35.61 μg·m-3);VOCs表现出明显的季节变化特征,即冬季>秋季>夏季>春季,且烷烃、烯烃和芳香烃均随季节表现出增加趋势.通过特征值甲苯/苯(T/B)研究发现,沈阳春季VOCs主要来源于交通源和采暖源,夏季主要来源机动车尾气以及溶剂挥发,秋冬季主要受生物质燃烧和煤燃烧等排放源的影响.通过对反应活性分析,燃烧源是沈阳市控制臭氧污染的关键,丙烯、乙烯和1-己烯是沈阳市大气VOCs中反应活性最高的物种.  相似文献   

19.
我国典型城市环境大气挥发性有机物特征比值   总被引:21,自引:10,他引:11  
王鸣  陈文泰  陆思华  邵敏 《环境科学》2018,39(10):4393-4399
城市环境大气挥发性有机物(VOCs)比值能够提供有用信息.基于在我国典型城市进行的7次VOCs观测数据,利用正交最小二乘法(ODR)、线性拟合法等4种方法计算了VOCs组分比值,并探讨其在监测数据质量评估、来源诊断和光化学过程研究中的应用.结果显示:间,对-二甲苯与邻-二甲苯浓度在7次观测中均呈现非常好的相关性(r为0.975~0.997),且不同观测中比值接近(2.78~3.05),这一比值可以用来对城市大气VOCs(尤其是芳香烃)测量数据的可靠性进行评估.以甲苯/苯(T/B)和丙烷/乙烷(P/E)为例初步分析了我国不同城市大气VOCs来源的差异.上海和广州T/B最高,分别为2.37和1.78,高于隧道实验中T/B比值(1.52),说明还受到溶剂涂料等富含甲苯的排放源影响,北京夏季T/B与隧道实验接近,而成都、北京冬季和重庆T/B较低(0.744~1.36),说明受到生物质燃烧、煤燃烧等其他富含苯的排放源影响.P/E分析结果显示,广州P/E(1.27)显著高于其他数据集(0.270~0.645),与2010年广州部分公交车和出租车仍利用液化石油气(LPG)作为燃料有关.另外,基于邻-二甲苯/乙苯变化特征表征光化学反应程度,并初步估算出典型城市大气上午·OH暴露量为(2.70~4.45)×10~(10)molecule·cm~(-3)·s.  相似文献   

20.
我国人为源挥发性有机物反应性排放清单   总被引:21,自引:16,他引:5  
以我国人为源挥发性有机物(VOCs)为研究对象,使用具有代表性的VOCs总量排放清单、各污染源成分谱及物种最大增量反应活性值(MIR),建立了2010年我国人为源VOCs基于臭氧生成潜势(OFP)的反应性排放清单.结果表明,2010年我国人为源挥发性有机物总OFP为84 187.61 kt,其中,烷烃6 882.53 kt,烯炔烃41 496.92 kt,芳香烃32 945.32 kt,卤代烃161.45kt,含氧有机化合物2 701.40 kt.OFP贡献前10种物种分别为丙烯、乙烯、间/对-二甲苯、甲苯、1-丁烯、邻-二甲苯、1,2,4-三甲苯、1,3-丁二烯、间-乙基甲苯和乙苯,占人为源总OFP的63.95%,仅占VOCs排放总量的31.84%.人为源三大污染源中,工业源贡献了49.29%的OFP,为最大贡献源,其次是交通源28.31%和农业源22.40%.建筑装饰、石油炼制、储存与运输、机械设备制造、交通设备制造和包装印刷为工业OFP主要贡献源;轻型载客汽车、重型载客汽车及摩托车为交通源OFP污染控制的重点;生物质燃烧两类子源均为农业源OFP重点控制对象.山东、江苏、广东、浙江和河南是我国人为源OFP贡献最大的省份,占人为源总OFP的39.65%.该反应性清单的建立,对我国基于反应性臭氧(O3)控制对策的制定具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号