首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
电增强活性炭纤维吸附有机污染物的动力学研究   总被引:2,自引:0,他引:2  
韩严和  全燮  赵慧敏  陈硕  赵雅芝 《环境科学》2006,27(6):1111-1116
研究了在电极化条件下,几种具有代表性污染物质在活性炭纤维上的电吸附动力学特性.结果表明,各种污染物的电吸附动力学比较好地符合Lagergren一级吸附动力学,其平衡吸附量在电极化下的增加量各不相同.在400mV的极化电位下,苯酚钠的吸附量从开路时的0.008 3mmol·g-1增加到0.18 mmol·g-1,增加了17倍;而对硝基苯酚的吸附量从开路时的2.93mmol·g-1降到2.65 mmol·g-1.在-400mV的极化电位下,苯胺的吸附量从开路时的3.60 mmol·g-1增加到3.88 mmol·g-1;而十二烷基苯磺酸钠的吸附量从开路时的2.20 mmol·g-1降到1.59 mmol·g-1.说明不同取代基的苯衍生物,电吸附改变量不相同,供电子基团的单取代苯,正极化都能明显增强其吸附量;但是吸电子基团的单取代,正负极化对吸附量的影响都很小;供体-共轭桥键-受体型结构的苯衍生物,正负极化都使其吸附减弱但吸附速率加快.静电作用在离子型污染物的电吸附中表现明显.  相似文献   

2.
This study focused on the adsorptive behaviors of humic acid onto freshly prepared hydrous MnO2(s) (δMnO2), and investigated the feasibility of employing δMnO2 for humic acid removal from drinking water. Effects of such parameters as molecular mass of humic acid, kinds of divalent cations on adsorptive behaviors and possible mechanisms involved were investigated. This study indicated that humic acid with higher molecular mass exhibited more tendency of adsorbing onto δMnO2 than that with lower molecular mass. Ca2+ facilitated more humic acid adsorption than Mg2+; UV-Vis spectra analysis indicated higher capabilities of Ca2+ coordinating with acidic functional groups of humic acid than that of Mg2+. Additionally, ζ potential characterization indicated that Ca2+ showed higher potential of increasing gz potential of δMnO2 than Mg2+. Ca2+ of 1.0 mmol/L increased ζ potential of δMnO2 from −37 mV (pH 7.9) to +7 mV (pH 7.2), while 1.0 mmol/L Mg2+ increased to lower value as −9 mV (pH 6.5), correspondingly. Fourier transform infrared (FTIR) spectra demonstrated the adsorption of humic acid onto δMnO2, showing the important roles of-COO functional groups and surface Mn-OH in the adsorption of humic acid onto δMnO2. Translated from Acta Scientiae Circumstantiae, 2005, 25(3): 351–355 [译自: 环境科学学报]  相似文献   

3.
An electrochemical-activated denitrifying biofilm system consisting of activated carbon fiber electrodes immobilized with denitrifying bacteria film as cathode was studied. A revised model for an electrochemical-activated denitrifying biofilm was developed and validated by electrochemical analysis of cathodal polarization curves and nitrate consumption rate. The cathodal polarization curve and nitrate consumption rate were introduced to verify the rate of electrochemical reaction and the activity of denitrifying bacteria, respectively. It was shown that the denitrification process effectively strengthened the electrochemical reaction while the electron also intensified denitrification activity. Electron was transferred between electrochemical process and biological process not only by hydrogen molecule but also by new produced active hydrogen atom. Additionally, a parameter of apparent exchange current density was deprived from the cathodal polarization curve with high overpotential, and a new bio-effect current density was defined through statistical analysis, which was linearly dependent to the activity of denitrification bacteria. Activated carbon fiber (ACF) electrode was also found to be more suitable to the electrochemical denitrifying system compared with graphite and platinum. Translated from Environmental Pollution & Control, 2005, 27(7): 501–504 [译自: 环境污染与防治]  相似文献   

4.
王瑶  吉庆华  李永峰  胡承志 《环境科学》2017,38(9):3747-3754
电吸附去除水中重金属离子具有吸附容量高和电极可再生的优点.本文采用高温水热法还原氧化石墨烯(GO)得到石墨烯水凝胶(GS)并经压片制得GS电极.本文对GS电极的电化学性能进行了测试,考察了GS电极电吸附Pb~(2+)的动力学和热力学特性,以及电极的脱附和循环使用情况.结果表明,GS电极的电化学性能优异,其单位质量比电容高达200.4 F·g~(-1)(1 A·g~(-1));提高电压有利于GS电极电吸附Pb~(2+),电压为-1.2 V时,GS电极对Pb~(2+)的去除率达96.4%;GS电极电吸附Pb~(2+)的饱和吸附量达461.20 mg·g~(-1),是不加电时饱和吸附量的2倍;施加反向电压可以实现Pb~(2+)的脱附和电极再生,电吸附-脱附15次后,电极对Pb~(2+)的去除率保持在95%以上.  相似文献   

5.
晋圣珧  向阳  张隽瑀  张凯  吉庆华 《环境科学》2019,40(9):4091-4097
电吸附高效去除水中重金属离子的关键在于开发性能优异的电极材料.采用2,6-二氨基蒽醌(DA)修饰还原氧化石墨烯(r GO),通过溶剂热法成功制备了DA@rGO复合电极,考察了复合电极的电化学性质及电吸附Pb~(2+)性能.循环伏安测试表明,复合电极电化学性质优异,比电容在电流密度为1 A·g-1时达到304. 4 F·g-1,DA修饰显著提高了复合电极的赝电容.电吸附Pb~(2+)测试表明,施加电压为-1. 2 V时电吸附效果最优,反应60 min后Pb~(2+)去除率达94. 8%.电吸附过程符合一级动力学方程,Langmuir模型拟合得到Pb~(2+)的饱和吸附量为356. 66 mg·g-1,明显高于r GO电极(319. 40 mg·g-1),DA修饰引起的电容增加是复合电极Pb~(2+)吸附量提高的重要原因.使用0. 5 mol·L-1硝酸处理可使电极吸附的Pb~(2+)在5 min内脱附完全,实现吸附剂再生.经过10次电极吸附-脱附循环后,DA@rGO复合电极对Pb~(2+)的吸附去除率保持在88%左右,电极循环性能稳定.  相似文献   

6.
为探讨KMnO4用作阴极电子受体对牛粪长期发酵产电性能的影响,构建了以牛粪为主要底物的双室微生物燃料电池(Microbial fuel cell,MFC),考察了50,200,800mg/L KMnO4时牛粪MFC开路电势、输出电压、功率密度、有机底物变化及降解情况.结果表明:当KMnO4为800mg/L(MFC-800)时产生的开路电势和输出电压最高,分别达到1148mV和234mV,最大功率密度达177mW/m3,库伦效率和净产能最大,分别为18%和19.5MJ/t;电池运行203d后,MFC-800的COD去除率最高,达68.1%;在电池运行过程中,MFC-800的VFA浓度增加了3.5倍,达388mmol/L;pH值从7.25下降到5.71下降了1.54;产电结束后,阳极发酵固态剩余物的成分符合《有机肥料》(NY525-2012)标准,可用于有机肥料生产.  相似文献   

7.
Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a(NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At p H 7.0, the maximum adsorption capacity of 1.03 mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31 mg/g at 35°C.Under both acidic conditions(part of the adsorption sites was consumed) and basic conditions(negative charges formed on the surface of NFS, which led to a static repulsion of PO43-and HPO42-), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25 mol/L Na OH. The activation energy was calculated to be above 8.0 k J/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process.  相似文献   

8.
This research investigates the adsorption mechanisms of fluoride (F) on four clay minerals (kaolinite, montmorillonite, chlorite, and illite) under different F concentrations and reaction times by probing their fluoride superficial layer binding energies and element compositions using X-ray photoelectron spectroscopy (XPS). At high F concentrations (C 0 = 5–1000 mg·L−1), the amount of F adsorbed (Q F), amount of hydroxide released by clay minerals, solution F concentration, and the pH increase with increasing C 0. The increases are remarkable at C 0>50 mg·L−1. The QF increases significantly by continuously modifying the pH level. At C 0<5–100 mg·L−1, clay minerals adsorb H+ to protonate aluminum-bound surface-active hydroxyl sites in the superficial layers and induce F binding. As the C 0 increases, F, along with other cations, is adsorbed to form a quasi-cryolite structure. At C 0>100 mg·L−1, new minerals precipitate and the product depends on the critical Al3+ concentration. At [Al3+]>10−11.94 mol·L−1, cryolite forms, while at [Al3+]<10−11.94 mol·L−1, AlF3 is formed. At low C 0 (0.3–1.5 mg·L−1), proton transfer occurs, and the F adsorption capabilities of the clay minerals increase with time.  相似文献   

9.
To understand the water purification mechanism of potassium permanganate as a coagulation-aid during the preoxidation process, the microtopography of its reductive products, the newly formed hydrous manganese dioxide and the aged hydrous manganese dioxide, was investigated. The morphology of natural organic matter (NOM) adsorbed by the newly formed hydrous manganese dioxide was also compared with that of NOM alone. By using the tapping mode atomic force microscopy (AFM), the observation results show that the newly formed hydrous manganese dioxide possess a perforated sheet (with a thickness of 0–1.75 nm) as well as some spherical particle structures compared with the hydrous manganese dioxide with 2 h aging time, which demonstrated that the newly formed hydrous manganese dioxide had a large surface area and adsorption capacity. When 1 mmol/L newly formed hydrous manganese dioxide was added, the microtopography of NOM molecules shifted from a loosely dispersed pancake shape (with adsorption height of 5–8.5 nm) to a densely dispersed and uniform spherical structure. These results provide a valid proof that it is the perfect adsorption capability of the newly formed hydrous manganese dioxide that might result in the coagulation aid effect of potassium permanganate preoxidation. Translated from Environmental Science, 2006, 27(5): 945–949 [译自: 环境科学]  相似文献   

10.
A new biological nitrogen removal process, which is named herein “The circulating fluidized bed bioreactor (CFBBR)”, was developed for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed (Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical and economic point of view, the optimum nitrified liquid recirculation ratewas 400%. With a shortest total retention time of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recirculation rate of 400% based on the influent flow rate, the average removal efficiencies of total nitrogen (TN) and soluble chemical oxygen demand (SCOD) were found to be 88% and 95%, respectively. The average effluent concentrations of TN and SCOD were 3.5 mg/L and 16 mg/L, respectively. The volatile suspended solid (VSS) concentration, nitrification rate and denitrification rate in the system were less than 1.0 g/L, 0.026-0.1 g NH4 +-N/g VSS·d, and 0.016–0.074 g NOx -N/g VSS·d, respectively. __________ Translated from Environmental Engineering, 2007, 25(6): 2, 7–10 [译自: 环境工程]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号