首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
电解催化还原-氯氧化无害化去除水中硝酸盐氮   总被引:2,自引:1,他引:1       下载免费PDF全文
基于对Pd-Me双金属催化还原的机理分析,提出了以NH4+-N为目标产物,Fe催化还原NO3--N的理论设想. 结合折点氯化技术,以Ti/Fe为阴极,以Ti/Ir-Ru为阳极,以NaCl为支持电解质组建无隔膜电解体系,开展了水中NO3--N去除的试验研究. 结果表明,利用电解催化还原-氯氧化法可将模拟水样中NO3--N转化为N2去除,其反应历程为阴极催化还原NO3--N生成NH4+-N,阳极电解氯氧化NH4+-N生成N2. 在ρ(Cl-)为500 mg/L,电流密度为12 mA/cm2,极板距离为9 mm,搅拌强度为450 r/min的试验条件下电解150 min,初始ρ(NO3--N)为50 mg/L的模拟水样出水ρ(TN)和ρ(NO3--N)可分别降至2.9和2.8 mg/L,去除率分别达到94.1%和94.3%,NH4+-N和NO2--N均未检出. 分析认为,阴极对NO3--N的催化还原机理为:Fe化学吸附氮氧化合物离子中的O形成固定的N—O键,电解产生的活性还原物质攻击N—O形成N—H新键.   相似文献   

2.
以黑土、暗棕壤和水稻土为例,试验研究了交替冻融对土壤溶解性污染物的影响.结果表明,15次交替冻融后(在-20和20 ℃进行冻融处理),黑土浸提液的ρ(CODCr)下降了36%,水稻土浸提液上升了8%,暗棕壤浸提液未出现明显变化;黑土浸提液的ρ(NH4+-N)下降了22%,水稻土浸提液上升了84%,暗棕壤浸提液未出现明显变化;黑土和暗棕壤浸提液的ρ(NO3--N)分别上升了1.3和1.1倍,而水稻土未出现明显变化.土壤浸提液ρ(CODCr),ρ(NH4+-N)和ρ(NO3--N)的变化主要取决于土壤含氧水平,有氧条件下浸提液的ρ(CODCr)和ρ(NH4+-N)降低而ρ(NO3--N)升高,缺氧条件下则相反.土壤浸提液的ρ(TN)主要取决于土壤C/N,冻融后黑土、暗棕壤和水稻土浸提液的ρ(TN)分别上升了30%,35%和39%.   相似文献   

3.
为研究不同水文期河水与河岸带地下水的水量补给关系,以及河水中的氮污染物对河岸带近岸地下水水质的影响,选取了安徽省宿州市杨庄乡的奎河断面作为研究对象,基于氢氧同位素示踪技术、末端元混合模型、Pearson相关性分析和多元线性回归方法,分析河水、上游潜水等补给源对近岸含水层的ρ(NH4+-N)和ρ(NO3--N)的影响,并构建河岸带地下水氮浓度预测模型.结果表明:①平水期至丰水期期间河水与地下水的补给来源主要为大气降水,河水始终补给河岸带地下水,其中,河水对潜水层及弱承压层的补给率分别为10.87%~49.74%和0~19.78%.②空间分布上,ρ(NH4+-N)和ρ(NO3--N)均表现为河水>近岸潜水>近岸弱承压水,且在地下水中均呈现由河流向两岸递减的关系.③近岸潜水层与弱承压层的ρ(NH4+-N)均随着河水和上游潜水ρ(NH4+-N)贡献量的增加而升高,近岸潜水层的ρ(NO3--N)随着河水和上游潜水ρ(NH4+-N)贡献量的增加而升高.④相比于ρ(NO3--N),多元线性回归模型更能准确地预测近岸潜水层与弱承压层ρ(NH4+-N)在ORP、ρ(DO)、河水ρ(NH4+-N)贡献量,以及上游潜水ρ(NH4+-N)和ρ(NO3--N)贡献量综合影响下的变化趋势.研究显示,河水与上游潜水的线性混合是造成河岸带地下水氮污染的重要途径,河流氮污染防治措施将为河岸带地下水水质提供重要保障.   相似文献   

4.
桂林峰林平原区岩溶含水层氮污染空间分布特征   总被引:4,自引:0,他引:4  
为确定桂林东区岩溶含水层氮污染特征,依据地层结构及土地利用状况,选择桂林东区27个地表水与地下水采样点进行取样分析. 结果显示:桂林东区地下水NO3--N污染较为严重,ρ(NO3--N)平均值(以N计,下同)为9.15mg/L,濒临世界卫生组织的地下水饮用标准界限(10mg/L);ρ(NH4+-N)基本未检出,ρ(NO2--N)较低且NO2--N主要存在于地表水中,NH4+-N和NO2--N都不是该区地下水中氮的主要存在形式. 不同土地利用类型的区域ρ(NO3--N)水平(0.088~46.700mg/L)不同. 居民区生活污水和牲畜粪肥是浅层地下水的主要NO3--N污染源,种植蔬菜施用的有机肥则是农业区的NO3--N污染源. 此外,受水文地质条件的影响,在研究区地下水流场内沿地下水流方向ρ(NO3--N)呈逐渐升高的趋势.   相似文献   

5.
太湖沉积物及孔隙水中氮的时空分布特征   总被引:14,自引:4,他引:10  
张彦  张远  于涛  宋晓娜  冯启言 《环境科学研究》2010,23(11):1333-1342
通过2009年4月和9月2次大规模采样监测,研究了太湖沉积物和孔隙水中不同形态氮的时空分布规律. 结果表明:太湖沉积物和孔隙水中不同形态的氮在垂向变化上没有明显的季节性差异. 沉积物中氮在水平分布上表现为w(TN),w(NH4+-N)和w(NO3--N)在北部湖区和东部湖区较高,而在湖心区较低;在深度变化上,w(TN)从下往上逐渐增大,而w(NH4+-N)却呈相反的趋势,w(NO3--N)没有明显变化. 沉积物中w(有机氮)占w(TN)的80%,二者之间有很好的相关性(R=0.894,P<0.01),w(TN)主要受w(有机氮)影响. 孔隙水中的氮在水平分布上表现为ρ(TN),ρ(NH4+-N)和ρ(NO3--N)与沉积物中的氮分布基本一致;垂直变化上,孔隙水ρ(TN)和ρ(NH4+-N)从下向上逐渐减小,而ρ(NO3--N)无明显变化规律;孔隙水中ρ(NH4+-N)占ρ(TN)的50%,二者之间也有很好的相关性(R=0.886,P<0.01),ρ(TN)主要受ρ(NH4+-N)的影响. 分析显示,2种介质中3种形态的氮有很好的相关性. 对沉积物中不同类型的有机质和各形态氮的相关分析发现,沉积物中有机质的类型和含量是影响氮素迁移转化的重要因素.   相似文献   

6.
农田退水期阿什河氮污染特征及来源解析   总被引:1,自引:0,他引:1  
利用水质监测技术和稳定同位素示踪技术,对春季农田退水期阿什河河水中ρ(NH4+-N)、ρ(NO3--N)和ρ(TN)特征进行研究并对氮污染来源进行解析. 结果表明,ρ(NH4+-N)、ρ(NO3--N)和ρ(TN)除在阿什河上游源头区水体中较低外,其余大部分区域均较高. 上游源头区采样点 δ 15N值为3.68‰~6.09‰,主要受大气沉降氮和土壤有机氮的污染;中下游区域中一部分采样点δ15N值为5.32‰~7.72‰,主要受农田退水和农村生活污水影响,另一部分采样点δ15N值为8.45‰~11.86‰,主要受畜禽养殖污水影响较大;下游采样点δ15N值较低(3.25‰~4.15‰),主要受工业来源废水污染. 农田,特别是河流两岸的稻田退水对阿什河水质影响较大;城区对阿什河TN和NH4+-N影响较大,对NO3--N影响较小.   相似文献   

7.
为研究主流PN/A(短程硝化/厌氧氨氧化)工艺中短程硝化稳定运行控制策略,采用连续流CANON反应器,以人工模拟低氨氮[ρ(NH4+-N)为50 mg/L]无机废水为进水,考察了FA(free ammonia,游离氨)、DO等控制参数对低氨氮下连续流CANON反应器短程硝化的影响.结果表明,启动前期提高进水NLR(nitrogen volume loading,氮容积负荷)有利于维持CANON的稳定运行,控制NLR在1.01 kg/(m3·d),运行至32 d,ΔNO3--N/ΔNH4+-N(指NO3--N产生量与NH4+-N消耗量的比值)始终维持在(0.11±0.02).然而随着运行时间的延长,ρ(NO3--N)逐渐增长,ΔNO3--N/ΔNH4+-N从理论值升至0.49,短程硝化受到严重破坏.过程中控制ρ(FA)在2 mg/L以上,NOB(亚硝酸盐氧化菌)受到明显抑制,但抑制周期短暂,并且随着ρ(FA)的降低,ρ(NO3--N)快速升高,FA抑制失效.限制氧供给,控制ρ(DO) < 0.3 mg/L,ΔNO3--N/ΔNH4+-N降至0.16,但NOB并未被完全抑制,ρ(NO3--N)仍呈上升趋势.微生物活性测定结果表明,运行中功能菌活性均得到增强,并且发现VAOB > VAnAOB > VNOB,在限氧条件下[ρ(DO) < 0.3 mg/L]运行,NOB虽受抑制但仍维持较高活性.研究显示,在低氨氮条件下,采用FA以及限氧的方式对NOB抑制作用有限,对NOB控制条件的选择需结合反应器内微生物种群结构、生长特性进行进一步研究.   相似文献   

8.
为了解富营养水体中NH4+-N胁迫对埃格草(Egeria densa)的影响,通过室外模拟试验,研究了埃格草在不同ρ(NH4+-N)(0、0.5、2.0 mg/L)下的RGR(relative growth rate,相对生长率)、R/S(root/shoot ratio,根冠比)、w(SC)(SC为可溶性糖,soluble sugar)、w(淀粉)、w(蔗糖)、w(FAA)(FAA为游离氨基酸,free amino acid)、w(NH4+-N)和w(NO3--N)的变化.结果表明:随着外源ρ(NH4+-N)的增加,埃格草的RGR和R/S呈降低的趋势,并且在ρ(NH4+-N)为2.0 mg/L时显著降低(RGR为P < 0.001,R/S为P < 0.05);埃格草中w(SC)和w(淀粉)在ρ(NH4+-N)为0.5和2.0 mg/L下有不同程度显著降低[w(SC)为P < 0.01和P < 0.001,w(淀粉)为P < 0.001和P < 0.05],w(蔗糖)在ρ(NH4+-N)为2.0 mg/L时显著降低(P < 0.001);w(FAA)和w(NH4+-N)有随外源ρ(NH4+-N)升高而升高的趋势,并且在ρ(NH4+-N)为2.0 mg/L时升高显著[w(FAA)为P < 0.01,w(NH4+-N)为P < 0.05];w(NO3--N)在ρ(NH4+-N)为0.5和2.0 mg/L下有不同程度显著降低(P < 0.01和P < 0.001).相关分析表明,w(SC)、w(淀粉)和w(蔗糖)之间呈显著正相关,三者与w(FAA)和w(NH4+-N)之间均呈显著负相关,而与w(NO3--N)呈显著正相关;w(FAA)和w(NH4+-N)呈显著正相关,而二者与w(NO3--N)均呈显著负相关.研究显示,NH4+-N影响埃格草的生长,导致C-N代谢的不平衡.   相似文献   

9.
为研究功能复合材料对低浓度氨氮〔ρ(NH4+-N)≤50 mg/L〕废水的处理效果,采用水热法制备TiO2/生物炭复合材料,并在自制光催化反应装置中对低浓度氨氮废水进行处理,考察TiO2负载量、温度、pH等因素对NH4+-N去除过程的影响以及催化的最终降解产物.结果表明,TiO2/生物炭复合材料能有效催化去除废水中的NH4+-N,其优化处理条件:ρ(NH4+-N)为50 mg/L,TiO2/生物炭复合材料投加量为1.5 g/L,254 nm紫外灯照射120 min,TiO2负载量为20%,废水初始pH为11.0,曝气量为150 mL/min.在优化处理条件下,当温度为60 ℃时NH4+-N去除率可达100%,常温(30 ℃)下可达67%.反应最终产物中ρ(NO2--N)非常低,并且无NO3--N生成.研究显示,TiO2/生物炭复合材料具有将NH4+-N转化为N2的良好光催化氧化选择性.   相似文献   

10.
潮汐流人工湿地的除氮效果及影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究TF-CW(tidal flow constructed wetland,潮汐流人工湿地)的除氮效果及其主要影响因素,以连续流模拟装置(A组)为对照,设置3种潮汐进水方式〔RAT(闲置时间∶反应时间)分别为1∶1、1∶2、2∶1,依次记做B组、C组、D组〕,运行175 d,分析不同进水方式下TF-CW模拟装置对TN、NH4+-N、NO3--N、TOC的去除效果及其在不同处理深度上的变化. 结果表明:A、B、C、D组TN平均去除率分别为82.41%±4.84%、84.82%±5.09%、86.09%±3.99%、90.23%±3.05%. A组TN和NH4+-N的去除效果与B、C、D组均差异显著(P<0.05),其中D组TN和NH4+-N的去除效果均最好;A组对NO3--N的总体去除效果较优;RAT并不影响TOC的去除率. 不同进水方式下,NH4+-N的去除率均在0~15 cm深度内最大,ρ(TOC)处于较低水平(0~20 mg/L),二者均随处理深度的不断增加而逐渐下降;ρ(NO3--N)在0~15 cm深度内迅速上升. 随着闲置时间的增加,ρ(DO)逐渐升高. TN和NH4+-N的去除率随着运行时间的增加基本保持恒定,主要影响因子有ρ(DO)、RAT、ORP(oxidation reduction potential,氧化还原电位)和ρ(TOC);而NO3--N的去除率随着运行时间的增加而逐渐降低,其主要影响因子有pH、电导率和水温等.   相似文献   

11.
腐解黑藻生物量对高硝态氮水体氮素的影响   总被引:3,自引:1,他引:2  
王博  叶春  杨劭  冯冠宇  洪涛  赵良元 《环境科学研究》2009,22(10):1198-1203
采用常见沉水植物黑藻为试验材料,引入太湖底泥并设定上覆水初始ρ(硝态氮)为15 mg/L,模拟初春沉水植物大规模腐烂时的温度,开展为期32 d的黑藻腐解试验研究. 结果显示,黑藻腐解对水体中ρ(氨氮)与ρ(硝态氮)之和的影响呈U字型,试验条件下黑藻腐解生物量为2.0 g(相当于0.111 kg/m2)时,水体中ρ(氨氮)与ρ(硝态氮)之和最低. 随着黑藻的腐解,释放进入水体的有机质和氮素增加,但同时也提高了水体中的ρ(TOC)/ρ(硝态氮)值,降低了Eh,提高了微生物的活性,因此有利于反硝化反应的发生.   相似文献   

12.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

13.
一株异养硝化-好氧反硝化菌的脱氮性能研究   总被引:6,自引:0,他引:6  
选用四因素三水平L9(34)正交试验表设计实验,通过测定对NO3--N(硝酸盐氮)和TIN的去除能力,研究碳源、碳氮比(ρ(CODCr)/ρ(N))、溶解氧含量(ρ(DO))以及pH 4种不同因素对一株恶臭假单胞菌好氧反硝化性能的影响. 结果表明,该菌株对NO3--N的最大还原率可达100%;对NO3--N还原率影响最大的因素为ρ(CODCr)/ρ(N),其次为ρ(DO),碳源和pH;对应的最优条件:碳源为柠檬酸三钠,ρ(CODCr)/ρ(N)15,转速为60 r/min,pH为6.5.对TIN去除率影响最大的因素为ρ(CODCr)/ρ(N),其次为碳源,ρ(DO)和pH; 对应的最优条件:碳源为柠檬酸三钠,ρ(CODCr)/ρ(N)15,转速为100 r/min,pH为6.5. 同时又对该菌株的异养硝化能力进行了测定发现,该菌株自身可实现同步硝化反硝化,其对氨氮的去除率可达60.91%,即该菌株可以独立完成生物脱氮的全部过程.   相似文献   

14.
为探究德州市采暖季环境空气中含氮/硫物质的污染特征、气-粒分配规律及影响因素,对2017年11月10日—2018年3月15日德州市市区环境空气监测站在线离子色谱分析仪监测的水溶性离子及气态前体物质量浓度的小时数据进行了分析.结果表明:①德州市环境空气监测站ρ(NO3-)、ρ(SO42-)和ρ(NH4+)平均值分别为(18.36±18.55)(12.74±10.92)(9.60±8.75)μg/m3,在2018年1月三者均达到最高值;对比PM2.5及气态含氮/硫物质的质量浓度发现,ρ(PM2.5)和ρ(SO2)在2017年12月、2018年1月和2018年2月的月均值均较高,而ρ(SO2)与ρ(SO42-)、ρ(NH3)与ρ(NH4+)均在日间(08:00—17:00)出现波峰.②对颗粒态和气态含氮/硫物质质量浓度日均值进行双变量相关分析发现,ρ(SO42-)、ρ(NO3-)、ρ(NH4+)两两之间的相关系数均高于0.75,表明二次离子的形成机制相似;而ρ(NH3)、ρ(NO2)、ρ(NO)、ρ(SO2)两两之间均不存在显著相关,说明这些气态前体物来自不同的局部排放源.③过剩NH3指数(FN)平均值为0.49±0.16,说明采样时段大气处于富氨环境,过剩的NH3会与气态HNO3生成NH4NO3,因此NO3-气溶胶的形成主要受HNO3的影响或限制.④相对湿度是影响ρ(PM2.5)最重要的气象因素,高湿环境会促进二次离子的转化.研究显示,冬季采暖排放会增加环境空气中含氮/硫物质的质量浓度,气象因素(尤其是相对湿度)对含氮/硫物质的气-粒分配也有一定影响.   相似文献   

15.
南京市江北工业区降水酸性及化学成分分析   总被引:20,自引:3,他引:17       下载免费PDF全文
于2005年9月─2006年8月在南京市江北地区南京信息工程大学校园内采集降水样品共59个,测定pH和电导率,用离子色谱仪检测样品的阴、阳离子浓度.结果表明:pH为4.17~8.34,酸雨频率为49.2%,电导率为1.1~42.5 mS/m;阴离子为F-,Cl-,NO2-和NO3-,SO42-,阳离子为Na+,K+,Mg2+,Ca2+和NH4+;主要阴、阳离子分别为SO42-,NO3-, NH4+和Ca2+,并存在季节性变化.ρ(SO42-)/ρ(NO3-)的年均值为4.21,表明酸雨仍为硫酸型.南京市工业区的大气污染物主要是燃煤过程中排放的SO2等气体.   相似文献   

16.
将膨胀颗粒污泥床(EGSB)和曝气生物滤池(BAF)集成,EGSB出水进入BAF进行短程硝化,BAF出水外回流至EGSB反应器为后者提供亚硝态氮,在不需外部投加亚硝态氮的条件下,实现厌氧氨氧化、甲烷化和短程硝化反硝化的耦合, 系统地处理ρ(氨氮)为50 mg/L和ρ(CODCr)为500 mg/L的合成废水.结果表明:当外回流比为200%时,系统CODCr,氨氮和总氮的去除率分别为92.4%,97.4%和80.6%;出水ρ(氨氮),ρ(亚硝态氮),ρ(硝态氮)和ρ(CODCr)分别为1.05,4.30,2.56和35.3 mg/L;CODCr,总氮和氨氮的去除负荷速率分别为1.770,0.137和0.164 kg/(m3·d). 与传统的活性污泥过程相比,EGSB-BAF集成系统回收甲烷1.03  L/d,占系统CODCr去除量的37.0%;在系统总氮的去除过程中,厌氧氨氧化途径占35.9%,短程反硝化途径占47.4%,全程反硝化途径占16.7%.   相似文献   

17.
为了明确泰山顶PM2.5及其二次组分的输送路径与潜在来源,基于后向轨迹聚类方法对2015年冬季和春季抵达泰山顶的气团传输轨迹进行聚类分析,并利用PSCF(潜在源贡献因子)和CWT(浓度权重轨迹)方法分析泰山顶冬季和春季PM2.5、SO42-、NO3-和NH4+的潜在源域.结果表明,冬季和春季来自不同方向的气团轨迹对泰山顶PM2.5及其组分的潜在源分布的影响具有明显差异.冬季泰山顶ρ(PM2.5)和ρ(NO3-)平均值的最高值对应的气团轨迹来自湖北、河南、山东济宁等地区,而来自西北方向的轨迹1和轨迹2分别对应的ρ(SO42-)和ρ(NH4+)平均值最高;春季影响ρ(PM2.5)和ρ(NO3-)的气团轨迹主要来自西南方向的河南、安徽北部、山东聊城等地区,而源自蒙古国途经内蒙古、山西、河南北部和山东聊城的气团轨迹对ρ(SO42-)和ρ(NH4+)的贡献最大.泰山顶ρ(PM2.5)、ρ(SO42-)、ρ(NO3-)和ρ(NH4+)的PSCF分布特征与CWT分布特征类似,WPSCF(源区分布概率)和CWT的最高计算值主要集中山东济宁、聊城以及邻近的山西省、河北省和河南省,是泰山顶大气污染物的主要潜在源域.   相似文献   

18.
为探究"稀土王国"江西省赣南地区离子型稀土矿对周边水体环境的影响,以离子型稀土矿分布密集区定南县濂江月子河流域和龙迳河龙头流域为研究对象,综合分析研究区特征污染物ρ(NH4+-N)空间分布特征,采用相关性分析和主成分分析揭示其主要污染来源及影响因素.结果表明:①离子型稀土矿停产整顿半年后,濂江月子河流域和龙迳河龙头流域ρ(NH4+-N)超过1.00和2.00 mg/L的采样点分别达72%和68%;pH范围为2.95~7.66,平均值分别为6.23和5.53,水体总体上偏酸性;ρ(TN)、ρ(NH4+-N)、EC与ρ(NO3--N)变异系数较大,均介于0.80~1.50之间.②相关性分析结果显示,ρ(NH4+-N)与ρ(TN)、EC均呈极显著正相关(P < 0.01);ρ(NH4+-N)与pH呈显著负相关(P < 0.05).③流经稀土尾矿区的水体中ρ(NH4+-N)随距离增加呈现明显的空间梯度分布特征,即距稀土矿区边界200 m处水体中ρ(NH4+-N)最高(12.20~200.00 mg/L),其次为1.15 km内(3.69~11.80 mg/L)及3.5 km以上水体(0.80~1.51 mg/L),矿区周边未受到采矿活动影响的水体中ρ(NH4+-N)最低(0.03~0.15 mg/L).④PCA结果表明,2条河流的主要环境影响因子为ρ(TN)、ρ(NH4+-N)、pH和EC,主要受到周边稀土矿山尾矿的强烈影响.研究显示,离子型稀土矿原位浸矿开采停产半年后,重点小流域水体中ρ(NH4+-N)高概率超标的现状仍然存在,受稀土开采活动影响较大.建议进一步开展重点小流域NH4+-N剩余"库容"精算和矿山周边地表水定期监测.   相似文献   

19.
为研究本溪市大气PM2.5中水溶性离子污染特征,于2016年1—10月在本溪市开展PM2.5样品采集,使用离子色谱法分析了其中8种水溶性离子(Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+),并采用PMF(positive matrix factorization,正矩阵因子分解法)模型对水溶性离子的来源进行分析.结果表明:观测期间,本溪市ρ(PM2.5)平均值为(57.6±21.9)μg/m3,ρ(PM2.5)季节性变化特征明显,呈冬季 > 秋季 > 春季 > 夏季趋势;水溶性离子平均质量浓度为19.3 μg/m3,占ρ(PM2.5)的33.6%,各离子质量浓度高低顺序为SO42- > NO3- > NH4+ > Cl- > Ca2+ > K+ > Na+ > Mg2+;SNA(SO42-、NO3-和NH4+)是PM2.5中主要的3种离子,在春季、夏季、秋季和冬季分别占水溶性离子的73.2%、88.2%、82.5%和73.6%,表明夏季的二次污染较为严重.阴、阳离子电荷平衡分析结果显示,阴离子相对亏损,本溪市PM2.5整体呈弱碱性,NO3-、SO42-与NH4+相关性较高,其在PM2.5中主要以NH4NO3和NH4HSO4的形式存在. PMF分析结果表明,本溪市PM2.5中水溶性离子的来源主要包括二次转化源、燃煤源和扬尘源.研究显示,本溪市PM2.5中水溶性离子季节性变化特征明显,二次转化源、燃煤源和扬尘源是其主要来源.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号