首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The sustained decline in marine fisheries worldwide underscores the need to understand and monitor fisheries trends and fisher behavior. Recreational fisheries are unique in that they are not subject to the typical drivers that influence commercial and artisanal fisheries (e.g., markets or food security). Nevertheless, although exposed to a different set of drivers (i.e., interest or relaxation), recreational fisheries can contribute to fishery declines. Recreational fisheries are also difficult to assess due to an absence of past monitoring and traditional fisheries data. Therefore, we utilized a nontraditional data source (a chronology of spearfishing publications) to document historical trends in recreational spearfishing in Australia between 1952 and 2009. We extracted data on reported fish captures, advertising, and spearfisher commentary and used regression models and ordination analyses to assess historical change. The proportion of coastal fish captures reported declined approximately 80%, whereas the proportion of coral reef and pelagic fish reports increased 1750% and 560%, respectively. Catch composition shifted markedly from coastal temperate or subtropical fishes during the 1950s to 1970s to coral reef and pelagic species in the 1990s to 2000s. Advertising data and commentary by spearfishers indicated that pelagic fish species became desired targets. The mean weight of trophy coral reef fishes also declined significantly over the study period (from approximately 30–8 kg). Recreational fishing presents a highly dynamic social–ecological interface and a challenge for management. Our results emphasize the need for regulatory agencies to work closely with recreational fishing bodies to observe fisher behavior, detect shifts in target species or fishing intensity, and adapt regulatory measures. Tendencias Dinámicas de Captura en la Historia de la Pesca Recreativa con Arpón en Australia  相似文献   

2.
Aggregations of individual animals that form for breeding purposes are a critical ecological process for many species, yet these aggregations are inherently vulnerable to exploitation. Studies of the decline of exploited populations that form breeding aggregations tend to focus on catch rate and thus often overlook reductions in geographic range. We tested the hypothesis that catch rate and site occupancy of exploited fish‐spawning aggregations (FSAs) decline in synchrony over time. We used the Spanish mackerel (Scomberomorus commerson) spawning‐aggregation fishery in the Great Barrier Reef as a case study. Data were compiled from historical newspaper archives, fisher knowledge, and contemporary fishery logbooks to reconstruct catch rates and exploitation trends from the inception of the fishery. Our fine‐scale analysis of catch and effort data spanned 103 years (1911–2013) and revealed a spatial expansion of fishing effort. Effort shifted offshore at a rate of 9.4 nm/decade, and 2.9 newly targeted FSAs were reported/decade. Spatial expansion of effort masked the sequential exploitation, commercial extinction, and loss of 70% of exploited FSAs. After standardizing for improvements in technological innovations, average catch rates declined by 90.5% from 1934 to 2011 (from 119.4 to 11.41 fish/vessel/trip). Mean catch rate of Spanish mackerel and occupancy of exploited mackerel FSAs were not significantly related. Our study revealed a special kind of shifting spatial baseline in which a contraction in exploited FSAs occurred undetected. Knowledge of temporally and spatially explicit information on FSAs can be relevant for the conservation and management of FSA species.  相似文献   

3.
Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing‐gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no‐take, hook‐and‐line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no‐take zones) most benefited community‐ and family‐level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community‐level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing‐gear types that affect biomass of a diverse set of reef fish families.  相似文献   

4.
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life‐history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. Efectos de la Densidad de Poblaciones Humanas y la Proximidad del Mercado sobre Peces de Arrecifes de Coral Vulnerables a la Extinción  相似文献   

5.
Factors affecting population recovery from depletion are at the focus of wildlife management. Particularly, it has been debated how life‐history characteristics might affect population recovery ability and productivity. Many exploited fish stocks have shown temporal changes towards earlier maturation and reduced adult body size, potentially owing to evolutionary responses to fishing. Whereas such life‐history changes have been widely documented, their potential role on stock's ability to recover from exploitation often remains ignored by traditional fisheries management. We used a marine ecosystem model parameterized for Southeastern Australian ecosystem to explore how changes towards “faster” life histories might affect population per capita growth rate r. We show that for most species changes towards earlier maturation during fishing have a negative effect (3–40% decrease) on r during the recovery phase. Faster juvenile growth and earlier maturation were beneficial early in life, but smaller adult body sizes reduced the lifetime reproductive output and increased adult natural mortality. However, both at intra‐ and inter‐specific level natural mortality and trophic position of the species were as important in determining r as species longevity and age of maturation, suggesting that r cannot be predicted from life‐history traits alone. Our study highlights that factors affecting population recovery ability and productivity should be explored in a multi‐species context, where both age‐specific fecundity and survival schedules are addressed simultaneously. It also suggests that contemporary life‐history changes in harvested species are unlikely to increase their resilience and recovery ability.  相似文献   

6.
The failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small‐scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem‐based management approaches. However, ecosystem‐based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life‐history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade‐offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem‐based fisheries management targets that can be easily applied even where research capacity and information is limited. Of particular value, is our finding that current management tools may be used to reach key ecosystem‐based management targets, enabling ecosystem‐based management in many socioeconomic contexts.  相似文献   

7.
Abstract: Customary management systems (i.e., management systems that limit the use of marine resources), such as rotational fisheries closures, can limit harvest of resources. Nevertheless, the explicit goals of customary management are often to influence fish behavior (in particular flight distance, i.e., distance at which an organism begins to flee an approaching threat), rather than fish abundance. We explored whether the flight distance of reef fishes targeted by local artisanal fishers differed between a customary closure and fished reefs. We also examined whether flight distance of these species affected fishing success and accuracy of underwater visual census (UVC) between customary closed areas and areas open to fishing. Several species demonstrated significant differences in flight distance between areas, indicating that fishing activity may increase flight distance. These relatively long flight distances mean that in fished areas most target species may stay out of the range of spear fishers. In addition, mean flight distances for all species both inside and outside the customary‐closure area were substantially smaller than the observation distance of an observer conducting a belt‐transect UVC (mean [SE]= 8.8 m [0.48]). For targeted species that showed little ability to evade spear fishers, customary closures may be a vital management technique. Our results show that customary closures can have a substantial, positive effect on resource availability and that conventional UVC techniques may be insensitive to changes in flight behavior of fishes associated with fishing. We argue that short, periodic openings of customary closures may allow the health of the fish community to be maintained and local fishers to effectively harvest fishes.  相似文献   

8.
Territorial user rights for fisheries have been advocated as a way to achieve sustainable resource management. However, few researchers have empirically assessed their potential as ancillary marine conservation instruments by comparing them to no‐take marine protected areas. In kelp (Lessonia trabeculata) forests of central Chile, we compared species richness, density, and biomass of macroinvertebrates and reef fishes among territorial‐user‐right areas with low‐level and high‐level enforcement, no‐take marine protected areas, and open‐access areas in 42 100‐m subtidal transects. We also assessed structural complexity of the kelp forest and substratum composition. Multivariate randomized permutation tests indicated macroinvertebrate and reef fish communities associated with the different access regimes differed significantly. Substratum composition and structural complexity of kelp forest did not differ among access regimes. Univariate analyses showed species richness, biomass, and density of macroinvertebrates and reef fishes were greater in highly enforced territorial‐user‐right areas and no‐take marine protected areas than in open‐access areas. Densities of macroinvertebrates and reef fishes of economic importance were not significantly different between highly enforced territorial‐user‐right and no‐take marine protected areas. Densities of economically important macroinvertebrates in areas with low‐level enforcement were significantly lower than those in areas with high‐level enforcement and no‐take marine protected areas but were significantly higher than in areas with open access. Territorial‐user‐right areas could be important ancillary conservation instruments if they are well enforced. Derechos de Usuario Territoriales para Pesquerías como Instrumentos Accesorios para la Conservación Marina Costera en Chile  相似文献   

9.
Abstract: Increasing migration into urbanized centers in the Solomon Islands poses a great threat to adjacent coral reef fisheries because of negative effects on the fisheries and because it further erodes customary management systems. Parrotfish fisheries are of particular importance because the feeding habits of parrotfish (scrape and excavate coral) are thought to be critical to the resilience of coral reefs and to maintaining coral reef health within marine protected areas. We investigated the ecological impact of localized subsistence and artisanal fishing pressure on parrotfish fisheries in Gizo Town, Western Solomon Islands, by analyzing the density and size distribution of parrotfish with an underwater visual census (UVC), recall diary (i.e., interviews with fishers), and creel surveys to independently assess changes in abundance and catch‐per‐unit‐effort (CPUE) over 2 years. We then compared parrotfish data from Gizo Town with equivalent data from sites open to and closed to fishing in Kida and Nusa Hope villages, which have different customary management regimes. Results indicated a gradient of customary management effectiveness. Parrotfish abundance was greater in customary management areas closed to fishing, especially with regard to larger fish sizes, than in areas open to fishing. The decline in parrotfish abundance from 2004 to 2005 in Gizo was roughly the same magnitude as the difference in abundance decline between inside and outside customary management marine reserves. Our results highlight how weak forms of customary management can result in the rapid decline of vulnerable fisheries around urbanized regions, and we present examples in which working customary management systems (Kinda and Nusa Hope) can positively affect the conservation of parrotfish—and reef fisheries in general—in the highly biodiverse Coral Triangle region.  相似文献   

10.
The shark fin trade is a major driver of shark exploitation in fisheries all over the world, most of which are not managed on a species‐specific basis. Species‐specific trade information highlights taxa of particular concern and can be used to assess the efficacy of management measures and anticipate emerging threats. The species composition of the Hong Kong Special Administrative Region of China, one of the world's largest fin trading hubs, was partially assessed in 1999–2001. We randomly selected and genetically identified fin trimmings (n = 4800), produced during fin processing, from the retail market of Hong Kong in 2014–2015 to assess contemporary species composition of the fin trade. We used nonparametric species estimators to determine that at least 76 species of sharks, batoids, and chimaeras supplied the fin trade and a Bayesian model to determine their relative proportion in the market. The diversity of traded species suggests species substitution could mask depletion of vulnerable species; one‐third of identified species are threatened with extinction. The Bayesian model suggested that 8 species each comprised >1% of the fin trimmings (34.1–64.2% for blue [Prionace glauca], 0.2–1.2% for bull [Carcharhinus leucas] and shortfin mako [Isurus oxyrinchus]); thus, trade was skewed to a few globally distributed species. Several other coastal sharks, batoids, and chimaeras are in the trade but poorly managed. Fewer than 10 of the species we modeled have sustainably managed fisheries anywhere in their range, and the most common species in trade, the blue shark, was not among them. Our study and approach serve as a baseline to track changes in composition of species in the fin trade over time to better understand patterns of exploitation and assess the effects of emerging management actions for these animals.  相似文献   

11.
Abstract: Achieving multiple conservation objectives can be challenging, particularly under high uncertainty. Having agreed to limit seahorse (Hippocampus) exports to sustainable levels, signatories to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) were offered the option of a single 10‐cm minimum size limit (MSL) as an interim management measure for all Hippocampus species (≥34). Although diverse stakeholders supported the recommended MSL, its biological and socioeconomic implications were not assessed quantitatively. We combined population viability analysis, model sensitivity analysis, and economic information to evaluate the trade‐off between conservation threat to and long‐term cumulative income from these exploited marine fishes of high conservation concern. We used the European long‐snouted seahorse (Hippocampus guttulatus) as a representative species to compare the performance of MSLs set at alternative biological reference points. Our sensitivity analyses showed that in most of our scenarios, setting the MSL just above size at maturity (9.7 cm in H. guttulatus) would not prevent exploited populations from becoming listed as vulnerable. By contrast, the relative risk of decline and extinction were almost halved—at a cost of only a 5.6% reduction in long‐term catches—by increasing the MSL to the size reached after at least one full reproductive season. On the basis of our analysis, a precautionary increase in the MSL could be compatible with sustaining fishers' livelihoods and international trade. Such management tactics that aid species conservation and have minimal effects on long term catch trends may help bolster the case for CITES trade management of other valuable marine fishes.  相似文献   

12.
Abstract: Changes in the management of the fin fish fishery of the Great Barrier Reef motivated us to investigate the combined effects on economic returns and fish biomass of no‐take areas and regulated total allowable catch allocated in the form of individual transferable quotas (such quotas apportion the total allowable catch as fishing rights and permits the buying and selling of these rights among fishers). We built a spatially explicit biological and economic model of the fishery to analyze the trade‐offs between maintaining given levels of fish biomass and the net financial returns from fishing under different management regimes. Results of the scenarios we modeled suggested that a decrease in total allowable catch at high levels of harvest either increased net returns or lowered them only slightly, but increased biomass by up to 10% for a wide range of reserve sizes and an increase in the reserve area from none to 16% did not greatly change net returns at any catch level. Thus, catch shares and no‐take reserves can be complementary and when these methods are used jointly they promote lower total allowable catches when harvest is relatively high and encourage larger no‐take areas when they are small.  相似文献   

13.
Abstract: Freshwater biodiversity conservation is generally perceived to conflict with human use and extraction (e.g., fisheries). Overexploited fisheries upset the balance between local economic needs and endangered species’ conservation. We investigated resource competition between fisheries and Ganges river dolphins (Platanista gangetica gangetica) in a human‐dominated river system in India to assess the potential for their coexistence. We surveyed a 65‐km stretch of the lower Ganga River to assess habitat use by dolphins (encounter rates) and fishing activity (habitat preferences of fishers, intensity of net and boat use). Dolphin abundance in the main channel increased from 179 (SE 7) (mid dry season) to 270 (SE 8) (peak dry season), probably as a result of immigration from upstream tributaries. Dolphins preferred river channels with muddy, rocky substrates, and deep midchannel waters. These areas overlapped considerably with fishing areas. Sites with 2–6 boats/km (moderately fished) were more preferred by dolphins than sites with 8–55 boats/km (heavily fished). Estimated spatial (85%) and prey–resource overlap (75%) between fisheries and dolphins (chiefly predators of small fish) suggests a high level of competition between the two groups. A decrease in abundance of larger fish, indicated by the fact that small fish comprised 74% of the total caught, may have intensified the present competition. Dolphins seem resilient to changes in fish community structure and may persist in overfished rivers. Regulated fishing in dolphin hotspots and maintenance of adequate dry season flows can sustain dolphins in tributaries and reduce competition in the main river. Fish‐stock restoration and management, effective monitoring, curbing destructive fishing practices, secure tenure rights, and provision of alternative livelihoods for fishers may help reconcile conservation and local needs in overexploited river systems.  相似文献   

14.
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum‐type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat‐forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. Definición de Hábitats Críticos para Peces Arrecifales Amenazados y Endémicos Mediante un Método Multivariado  相似文献   

15.
Identifying which nonindigenous species will become invasive and forecasting the damage they will cause is difficult and presents a significant problem for natural resource management. Often, the data or resources necessary for ecological risk assessment are incomplete or absent, leaving environmental decision makers ill equipped to effectively manage valuable natural resources. Structured expert judgment (SEJ) is a mathematical and performance‐based method of eliciting, weighting, and aggregating expert judgments. In contrast to other methods of eliciting and aggregating expert judgments (where, for example, equal weights may be assigned to experts), SEJ weights each expert on the basis of his or her statistical accuracy and informativeness through performance measurement on a set of calibration variables. We used SEJ to forecast impacts of nonindigenous Asian carp (Hypophthalmichthys spp.) in Lake Erie, where it is believed not to be established. Experts quantified Asian carp biomass, production, and consumption and their impact on 4 fish species if Asian carp were to become established. According to experts, in Lake Erie Asian carp have the potential to achieve biomass levels that are similar to the sum of biomasses for several fishes that are harvested commercially or recreationally. However, the impact of Asian carp on the biomass of these fishes was estimated by experts to be small, relative to long term average biomasses, with little uncertainty. Impacts of Asian carp in tributaries and on recreational activities, water quality, or other species were not addressed. SEJ can be used to quantify key uncertainties of invasion biology and also provide a decision‐support tool when the necessary information for natural resource management and policy is not available. El Uso de Juicio Experto Estructurado para Predecir Invasiones de Carpas Asiáticas en el Lago Erie  相似文献   

16.
We documented the spawning patterns of the leopard grouper, Mycteroperca rosacea, from April to June 2005 in the central Gulf of California, Mexico to draw comparisons with other aggregate-spawning groupers and provide information useful for management of their fishery. Adults formed spawning aggregations of 150 to >700 individuals at specific sites, and spawning occurred daily at these sites from late April through early June. Courtship occurred throughout the day, but spawning was restricted to the evening hours. Adults spawned in groups of 6–40 fish, and pair-spawning was not observed. The group-spawning behavior of adults and the gonosomatic indices of mature males (maximum = 7.2%) suggest that sperm competition was present. The site-specificity of leopard grouper spawning aggregations and diel spawning period were typical of most aggregating groupers, and the size and structure of these aggregations was similar to other species in the genus Mycteroperca. Leopard grouper behavior patterns were unusual in that spawning aggregations persisted for extended periods, spawning was not synchronized with the lunar cycle, and adults aggregated during non-spawning periods. The extensive duration and site-specificity of spawning aggregations and the propensity of M. rosacea to form aggregations year-round increases the vulnerability of the species to overfishing. Policies that limit harvest from these aggregations are needed to improve the management of leopard grouper fisheries in the Gulf of California.  相似文献   

17.
Abstract: In many areas of the developing world, the establishment of permanent marine reserves is inhibited by cultural norms or socioeconomic pressures. Community conserved areas that are periodically harvested are increasingly being implemented as fisheries management tools, but few researchers have empirically compared them with permanently closed reserves. We used a hierarchal control‐impact experimental design to compare the abundance and biomass of reef fishes, invertebrates, and substrate composition in periodically harvested and permanent reserves and in openly fished (control sites) of the South Pacific island country of Vanuatu. Fished species had significantly higher biomass in periodically harvested reserves than in adjacent openly fished areas. We did not detect differences in substratum composition between permanent reserves and openly fished areas or between permanent reserves and periodically harvested reserves. Giant clams (tridacnids) and top shells (Trochus niloticus) were vulnerable to periodic harvest, and we suggest that for adequate management of these species, periodically harvested community conservation areas be used in conjunction with other management strategies. Periodic harvest within reserves is an example of adaptive and flexible management that may meet conservation goals and that is suited to the social, economic, and cultural contexts of many coastal communities in the developing world.  相似文献   

18.
Identifying drivers of ecosystem change in large marine ecosystems is central for their effective management and conservation. This is a sizable challenge, particularly in ecosystems transcending international borders, where monitoring and conservation of long‐range migratory species and their habitats are logistically and financially problematic. Here, using tools borrowed from epidemiology, we elucidated common drivers underlying species declines within a marine ecosystem, much in the way epidemiological analyses evaluate risk factors for negative health outcomes to better inform decisions. Thus, we identified ecological traits and dietary specializations associated with species declines in a community of marine predators that could be reflective of ecosystem change. To do so, we integrated count data from winter surveys collected in long‐term marine bird monitoring programs conducted throughout the Salish Sea—a transboundary large marine ecosystem in North America's Pacific Northwest. We found that decadal declines in winter counts were most prevalent among pursuit divers such as alcids (Alcidae) and grebes (Podicipedidae) that have specialized diets based on forage fish, and that wide‐ranging species without local breeding colonies were more prone to these declines. Although a combination of factors is most likely driving declines of diving forage fish specialists, we propose that changes in the availability of low‐trophic prey may be forcing wintering range shifts of diving birds in the Salish Sea. Such a synthesis of long‐term trends in a marine predator community not only provides unique insights into the types of species that are at risk of extirpation and why, but may also inform proactive conservation measures to counteract threats—information that is paramount for species‐specific and ecosystem‐wide conservation. Evaluación de las Correlaciones Ecológicas de las Declinaciones de Aves Marinas para Informar a la Conservación Marina  相似文献   

19.
Desert fishes are some of the most imperiled vertebrates worldwide due to their low economic worth and because they compete with humans for water. An ecological complex of fishes, 2 suckers (Catostomus latipinnis, Catostomus discobolus) and a chub (Gila robusta) (collectively managed as the so‐called three species) are endemic to the U.S. Colorado River Basin, are affected by multiple stressors, and have allegedly declined dramatically. We built a series of occupancy models to determine relationships between trends in occupancy, local extinction, and local colonization rates, identify potential limiting factors, and evaluate the suitability of managing the 3 species collectively. For a historical period (1889–2011), top performing models (AICc) included a positive time trend in local extinction probability and a negative trend in local colonization probability. As flood frequency decreased post‐development local extinction probability increased. By the end of the time series, 47% (95% CI 34‐61) and 15% (95% CI 6‐33) of sites remained occupied by the suckers and the chub, respectively, and models with the 2 species of sucker as one group and the chub as the other performed best. For a contemporary period (2001?2011), top performing (based on AICc) models included peak annual discharge. As peak discharge increased, local extinction probability decreased and local colonization probability increased. For the contemporary period, results of models that split all 3 species into separate groups were similar to results of models that combined the 2 suckers but not the chub. Collectively, these results confirmed that declines in these fishes were strongly associated with water development and that relative to their historic distribution all 3 species have declined dramatically. Further, the chub was distinct in that it declined the most dramatically and therefore may need to be managed separately. Our modeling approach may be useful in other situations in which targeted data are sparse and conservation status and best management approach for multiple species are uncertain.  相似文献   

20.
Many believe commercial fisheries in Alaska (U.S.A.) are sustainability success stories, but ongoing socioeconomic problems across the state raise questions about how this sustainability is being defined and evaluated. Problems such as food insecurity and the disenfranchisement of Alaska Natives from fishing rights are well documented, yet these concerns are obscured by marketing campaigns that convey images of flourishing fishing communities and initiatives to certify Alaska's fisheries as responsibly managed. Fisheries management mandates and approaches built on such metrics and technologies as maximum sustainable yield and systems of tradable quotas actually serve to constrain, circumscribe, and marginalize some Alaskans’ opportunities for effecting change in how the benefits of these fisheries are allocated. Beneath the narrative of sustainability, these management technologies perpetuate a cognitive ecological model of sustainability that is oriented to single‐species outcomes, that casts people as parasites, and thus assumes the necessity of trade‐offs between biological and social goals. Alternative cognitive models are available that draw metaphors from different ecological concepts such as keystone species and mutualisms. Such models, when used to inform management approaches, may improve societal outcomes in Alaska and elsewhere by promoting food security and sustainability through diversified natural resource harvest strategies that are more flexible and responsive to environmental variability and change. Perspectivas Alternativas sobre la Sustentabilidad de las Pesquerías Comerciales en Alaska  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号